1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
/*
COPYRIGHT
All contributions by Taiga Nomi
Copyright (c) 2013, Taiga Nomi
All rights reserved.
All other contributions:
Copyright (c) 2013-2016, the respective contributors.
All rights reserved.
Each contributor holds copyright over their respective contributions.
The project versioning (Git) records all such contribution source information.
LICENSE
The BSD 3-Clause License
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of tiny-dnn nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "tiny_dnn/core/framework/device.fwd.h"
#include "tiny_dnn/core/params/conv_params.h"
namespace tiny_dnn {
namespace core {
class OpKernel; // delared below
class OpKernelConstruction {
public:
explicit OpKernelConstruction() {}
explicit OpKernelConstruction(Device* device, Params* params)
: device_(device), params_(params) {}
// Returns the device raw pointer
Device* device() const { return device_; }
// Returns the device raw pointer
Params* params() const { return params_; }
private:
Device* device_ = nullptr;
Params* params_ = nullptr;
};
class OpKernelContext {
public:
struct OpParams {
// the op kernel being computed.
OpKernel* op_kernel_ptr = nullptr;
// the device on which the kernel is running.
Device* device_ptr = nullptr;
// the layer on which kernel is runnning
layer* layer_ptr_ = nullptr;
// the operation params
Params* params_ptr_ = nullptr;
// parallelize operation
bool parallelize = false;
backend_t engine = default_engine();
};
explicit OpKernelContext(const std::vector<tensor_t*>& in_data,
std::vector<tensor_t*>& out_data)
: in_data_(in_data), out_data_(out_data) {
op_params_ = std::unique_ptr<OpParams>(new OpParams());
}
explicit OpKernelContext(const std::vector<tensor_t*>& in_data,
const std::vector<tensor_t*>& out_data,
std::vector<tensor_t*>& out_grad,
std::vector<tensor_t*>& in_grad)
: in_data_(in_data)
, out_data_(out_data)
, out_grad_(out_grad)
, in_grad_(in_grad) {
op_params_ = std::unique_ptr<OpParams>(new OpParams());
}
tensor_t& input(const int idx) const {
return *in_data_[idx];
}
tensor_t& output(const int idx) const {
return *out_data_[idx];
}
tensor_t& input_grad(const int idx) const {
return *in_grad_[idx];
}
tensor_t& output_grad(const int idx) const {
return *out_grad_[idx];
}
void setParams(Params* params) {
op_params_->params_ptr_ = params;
}
Params* params() const {
return op_params_->params_ptr_;
}
void setParallelize(const bool parallelize) {
op_params_->parallelize = parallelize;
}
bool parallelize() const {
return op_params_->parallelize;
}
void setDevice(Device* device) {
op_params_->device_ptr = device;
}
Device* device() const {
return op_params_->device_ptr;
}
void setLayer(layer* layer) {
op_params_->layer_ptr_ = layer;
}
layer* Layer() const {
return op_params_->layer_ptr_;
}
backend_t engine() const {
return op_params_->engine;
}
void setEngine(const backend_t engine) {
op_params_->engine = engine;
}
private:
std::vector<tensor_t*> in_data_;
std::vector<tensor_t*> out_data_;
std::vector<tensor_t*> out_grad_;
std::vector<tensor_t*> in_grad_;
std::unique_ptr<OpParams> op_params_;
};
class OpKernel {
public:
explicit OpKernel() {}
explicit OpKernel(const OpKernelConstruction& context)
: device_(context.device())
, params_(context.params()) {}
virtual ~OpKernel() {}
virtual void compute(const OpKernelContext& context) = 0;
protected:
Device* device_ = nullptr;
Params* params_ = nullptr;
};
} // namespace core
} // namespace tiny_dnn
|