1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
/*
Copyright (c) 2016, Taiga Nomi, Edgar Riba
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <vector>
#include "tiny_dnn/core/params/conv_params.h"
#include "tiny_dnn/core/kernels/conv2d_op_internal.h"
#ifdef CNN_USE_AVX
#include "tiny_dnn/core/kernels/avx_kernel_common.h"
#endif
namespace tiny_dnn {
namespace kernels {
#ifdef CNN_USE_AVX
// float ver
template <typename Allocator>
void avx_conv2d_5x5_back_kernel_one(const core::conv_params& params,
const std::vector<float, Allocator>& prev_out,
const std::vector<float, Allocator>& W,
std::vector<float, Allocator>& dW,
std::vector<float, Allocator>& db,
std::vector<float, Allocator>& curr_delta,
std::vector<float, Allocator>* prev_delta) {
auto& in = params.in;
auto& out = params.out;
auto& in_padded = params.in_padded;
auto& tbl = params.tbl;
auto w_stride = params.w_stride;
const size_t in_padded_area = in_padded.area();
float* pdelta_dst_org = &(*prev_delta)[0];
const size_t h_stride2 = params.h_stride * in_padded.width_;
static const __m256i imask = _mm256_setr_epi32(-1, -1, -1, -1, -1, 0, 0, 0);
static const __m256 mask = _mm256_castsi256_ps(_mm256_setr_epi32(-1, -1, -1, -1, -1, 0, 0, 0));
// propagate delta to previous layer
if (w_stride == 1 && out.width_ >= 4) {
const serial_size_t nblocks = out.width_ / 4;
for (serial_size_t inc = 0; inc < in.depth_; ++inc, pdelta_dst_org += in_padded_area) {
for (serial_size_t outc = 0; outc < out.depth_; outc++) {
if (!tbl.is_connected(outc, inc)) continue;
const float* pw = &W[25 * (in.depth_ * outc + inc)];
const float* pdelta_src = &curr_delta[out.get_index(0, 0, outc)];
float* pdelta_dst = pdelta_dst_org;
__m256 w0a = _mm256_and_ps(_mm256_loadu_ps(pw+0), mask);
__m256 w1a = _mm256_and_ps(_mm256_loadu_ps(pw+5), mask);
__m256 w2a = _mm256_and_ps(_mm256_loadu_ps(pw+10), mask);
__m256 w3a = _mm256_and_ps(_mm256_loadu_ps(pw+15), mask);
__m256 w4a = _mm256_and_ps(_mm256_loadu_ps(pw+20), mask);
__m256 w0b = leftShift<4>(w0a);
__m256 w1b = leftShift<4>(w1a);
__m256 w2b = leftShift<4>(w2a);
__m256 w3b = leftShift<4>(w3a);
__m256 w4b = leftShift<4>(w4a);
__m256 w0c = leftShift<8>(w0a);
__m256 w1c = leftShift<8>(w1a);
__m256 w2c = leftShift<8>(w2a);
__m256 w3c = leftShift<8>(w3a);
__m256 w4c = leftShift<8>(w4a);
__m256 w0d = leftShift<12>(w0a);
__m256 w1d = leftShift<12>(w1a);
__m256 w2d = leftShift<12>(w2a);
__m256 w3d = leftShift<12>(w3a);
__m256 w4d = leftShift<12>(w4a);
for (serial_size_t y = 0; y < out.height_; y++) {
const float* pdelta_src2 = pdelta_src;
float* delta_dst0 = pdelta_dst;
float* delta_dst1 = &pdelta_dst[in_padded.width_ * 1];
float* delta_dst2 = &pdelta_dst[in_padded.width_ * 2];
float* delta_dst3 = &pdelta_dst[in_padded.width_ * 3];
float* delta_dst4 = &pdelta_dst[in_padded.width_ * 4];
for (serial_size_t n = 0; n < nblocks; ++n) {
__m256 delta_src = _mm256_broadcast_ps((const __m128*)pdelta_src2);
__m256 dst0 = _mm256_loadu_ps(delta_dst0 + 4 * n);
__m256 dst1 = _mm256_loadu_ps(delta_dst1 + 4 * n);
__m256 dst2 = _mm256_loadu_ps(delta_dst2 + 4 * n);
__m256 dst3 = _mm256_loadu_ps(delta_dst3 + 4 * n);
__m256 dst4 = _mm256_loadu_ps(delta_dst4 + 4 * n);
__m256 delta_src0 = _mm256_permute_ps(delta_src, _MM_SHUFFLE(0, 0, 0, 0));
__m256 delta_src1 = _mm256_permute_ps(delta_src, _MM_SHUFFLE(1, 1, 1, 1));
__m256 delta_src2 = _mm256_permute_ps(delta_src, _MM_SHUFFLE(2, 2, 2, 2));
__m256 delta_src3 = _mm256_permute_ps(delta_src, _MM_SHUFFLE(3, 3, 3, 3));
dst0 = madd256_ps(w0a, delta_src0, dst0);
dst1 = madd256_ps(w1a, delta_src0, dst1);
dst2 = madd256_ps(w2a, delta_src0, dst2);
dst3 = madd256_ps(w3a, delta_src0, dst3);
dst4 = madd256_ps(w4a, delta_src0, dst4);
dst0 = madd256_ps(w0b, delta_src1, dst0);
dst1 = madd256_ps(w1b, delta_src1, dst1);
dst2 = madd256_ps(w2b, delta_src1, dst2);
dst3 = madd256_ps(w3b, delta_src1, dst3);
dst4 = madd256_ps(w4b, delta_src1, dst4);
dst0 = madd256_ps(w0c, delta_src2, dst0);
dst1 = madd256_ps(w1c, delta_src2, dst1);
dst2 = madd256_ps(w2c, delta_src2, dst2);
dst3 = madd256_ps(w3c, delta_src2, dst3);
dst4 = madd256_ps(w4c, delta_src2, dst4);
dst0 = madd256_ps(w0d, delta_src3, dst0);
_mm256_storeu_ps(delta_dst0 + 4 * n, dst0);
dst1 = madd256_ps(w1d, delta_src3, dst1);
_mm256_storeu_ps(delta_dst1 + 4 * n, dst1);
dst2 = madd256_ps(w2d, delta_src3, dst2);
_mm256_storeu_ps(delta_dst2 + 4 * n, dst2);
dst3 = madd256_ps(w3d, delta_src3, dst3);
_mm256_storeu_ps(delta_dst3 + 4 * n, dst3);
dst4 = madd256_ps(w4d, delta_src3, dst4);
_mm256_storeu_ps(delta_dst4 + 4 * n, dst4);
pdelta_src2 += 4;
}
for (serial_size_t x = nblocks * 4; x < out.width_; x++) {
__m256 delta_src = _mm256_broadcast_ss(pdelta_src + x);
__m256 dst0 = _mm256_loadu_ps(delta_dst0 + x);
__m256 dst1 = _mm256_loadu_ps(delta_dst1 + x);
__m256 dst2 = _mm256_loadu_ps(delta_dst2 + x);
__m256 dst3 = _mm256_loadu_ps(delta_dst3 + x);
__m256 dst4 = _mm256_loadu_ps(delta_dst4 + x);
dst0 = madd256_ps(w0a, delta_src, dst0);
dst1 = madd256_ps(w1a, delta_src, dst1);
dst2 = madd256_ps(w2a, delta_src, dst2);
dst3 = madd256_ps(w3a, delta_src, dst3);
dst4 = madd256_ps(w4a, delta_src, dst4);
_mm256_storeu_ps(delta_dst0 + x, dst0);
_mm256_storeu_ps(delta_dst1 + x, dst1);
_mm256_storeu_ps(delta_dst2 + x, dst2);
_mm256_storeu_ps(delta_dst3 + x, dst3);
_mm256_storeu_ps(delta_dst4 + x, dst4);
}
pdelta_src += out.width_;
pdelta_dst += h_stride2;
}
}
}
} else if (out.height_ == 1 && out.width_ == 1) {
for (serial_size_t inc = 0; inc < in.depth_; ++inc, pdelta_dst_org += in_padded_area) {
float* delta_dst0 = pdelta_dst_org;
float* delta_dst1 = &pdelta_dst_org[in_padded.width_ * 1];
float* delta_dst2 = &pdelta_dst_org[in_padded.width_ * 2];
float* delta_dst3 = &pdelta_dst_org[in_padded.width_ * 3];
float* delta_dst4 = &pdelta_dst_org[in_padded.width_ * 4];
__m256 dst0 = _mm256_loadu_ps(delta_dst0);
__m256 dst1 = _mm256_loadu_ps(delta_dst1);
__m256 dst2 = _mm256_loadu_ps(delta_dst2);
__m256 dst3 = _mm256_loadu_ps(delta_dst3);
__m256 dst4 = _mm256_maskload_ps(delta_dst4, imask);
// *FROM
// ---0 0000
// ---1 1111
// ---2 2222
// ---3 3333
// ---4 4444
//
// *TO
// 1110 0000
// 3222 2211
// 4444 3333
// ---- ---4
__m256 sum0 = _mm256_blend_ps(
dst0,
leftShift<20>(dst1),
0xE0 /* 0b11100000 */
);
__m256 sum1 = _mm256_blend_ps(
leftShift<28>(dst3),
_mm256_blend_ps(leftShift<8>(dst2), rightShift<12>(dst1), 0x03 /* 0b00000011 */),
0x7F /* 0b01111111 */
);
__m256 sum2 = _mm256_blend_ps(
leftShift<16>(dst4),
rightShift<4>(dst3),
0x0F /* 0b00001111 */
);
__m128 sum3 = _mm256_extractf128_ps(dst4, 1);
size_t widx = 25 * inc;
size_t wstep = 25 * in.depth_;
if (tbl.is_empty()) {
for (serial_size_t outc = 0; outc < out.depth_; outc++, widx+=wstep) {
__m256 delta_src = _mm256_broadcast_ss(&curr_delta[outc]);
const float* pw = (const float*)&W[widx];
__m256 w0 = _mm256_loadu_ps(pw+0);
__m256 w1 = _mm256_loadu_ps(pw + 8);
__m256 w2 = _mm256_loadu_ps(pw + 16);
__m128 w3 = _mm_load_ss(pw + 24);
sum0 = madd256_ps(w0, delta_src, sum0);
sum1 = madd256_ps(w1, delta_src, sum1);
sum2 = madd256_ps(w2, delta_src, sum2);
sum3 = madd128_ss(w3, _mm256_castps256_ps128(delta_src), sum3);
}
}
else {
for (serial_size_t outc = 0; outc < out.depth_; outc++, widx += wstep) {
if (!tbl.is_connected(outc, inc)) {
continue;
}
__m256 delta_src = _mm256_broadcast_ss(&curr_delta[outc]);
const float* pw = (const float*)&W[widx];
__m256 w0 = _mm256_loadu_ps(pw + 0);
__m256 w1 = _mm256_loadu_ps(pw + 8);
__m256 w2 = _mm256_loadu_ps(pw + 16);
__m128 w3 = _mm_load_ss(pw + 24);
sum0 = madd256_ps(w0, delta_src, sum0);
sum1 = madd256_ps(w1, delta_src, sum1);
sum2 = madd256_ps(w2, delta_src, sum2);
sum3 = madd128_ss(w3, _mm256_castps256_ps128(delta_src), sum3);
}
}
// *FROM
// 1110 0000
// 3222 2211
// 4444 3333
// ---- ---4
//
// *TO
// ---0 0000
// ---1 1111
// ---2 2222
// ---3 3333
// ---4 4444
dst0 = _mm256_blend_ps(
dst0,
sum0,
0x1F /* 0b00011111 */
);
dst1 = _mm256_blend_ps(
dst1,
_mm256_or_ps(
rightShift<20>(sum0),
leftShift<12>(sum1)
),
0x1F /* 0b00011111 */
);
dst2 = _mm256_blend_ps(
dst2,
rightShift<8>(sum1),
0x1F /* 0b00011111 */
);
dst3 = _mm256_blend_ps(
dst3,
_mm256_or_ps(
rightShift<28>(sum1),
leftShift<4>(sum2)
),
0x1F /* 0b00011111 */
);
dst4 = _mm256_blend_ps(
dst4,
_mm256_set_m128(
sum3,
_mm256_extractf128_ps(sum2, 1)
),
0x1F /* 0b00011111 */
);
_mm256_storeu_ps(delta_dst0, dst0);
_mm256_storeu_ps(delta_dst1, dst1);
_mm256_storeu_ps(delta_dst2, dst2);
_mm256_storeu_ps(delta_dst3, dst3);
_mm256_maskstore_ps(delta_dst4, imask, dst4);
} // for
} else {
for (serial_size_t inc = 0; inc < in.depth_; ++inc, pdelta_dst_org += in_padded_area) {
for (serial_size_t outc = 0; outc < out.depth_; outc++) {
if (!tbl.is_connected(outc, inc)) continue;
const float* pw = &W[25 * (in.depth_ * outc + inc)];
const float* pdelta_src = &curr_delta[out.get_index(0, 0, outc)];
float* pdelta_dst = pdelta_dst_org;
__m256 w0a = _mm256_maskload_ps(pw+0, imask);
__m256 w1a = _mm256_maskload_ps(pw+5, imask);
__m256 w2a = _mm256_maskload_ps(pw+10, imask);
__m256 w3a = _mm256_maskload_ps(pw+15, imask);
__m256 w4a = _mm256_maskload_ps(pw+20, imask);
for (serial_size_t y = 0; y < out.height_; y++) {
float* delta_dst0 = pdelta_dst;
float* delta_dst1 = &pdelta_dst[in_padded.width_ * 1];
float* delta_dst2 = &pdelta_dst[in_padded.width_ * 2];
float* delta_dst3 = &pdelta_dst[in_padded.width_ * 3];
float* delta_dst4 = &pdelta_dst[in_padded.width_ * 4];
for (serial_size_t x = 0; x < out.width_; x++) {
__m256 delta_src = _mm256_broadcast_ss(pdelta_src + x);
__m256 dst0 = _mm256_loadu_ps(delta_dst0);
__m256 dst1 = _mm256_loadu_ps(delta_dst1);
__m256 dst2 = _mm256_loadu_ps(delta_dst2);
__m256 dst3 = _mm256_loadu_ps(delta_dst3);
__m256 dst4 = _mm256_maskload_ps(delta_dst4, imask);
dst0 = madd256_ps(w0a, delta_src, dst0);
dst1 = madd256_ps(w1a, delta_src, dst1);
dst2 = madd256_ps(w2a, delta_src, dst2);
dst3 = madd256_ps(w3a, delta_src, dst3);
dst4 = madd256_ps(w4a, delta_src, dst4);
_mm256_storeu_ps(delta_dst0, dst0);
_mm256_storeu_ps(delta_dst1, dst1);
_mm256_storeu_ps(delta_dst2, dst2);
_mm256_storeu_ps(delta_dst3, dst3);
_mm256_maskstore_ps(delta_dst4, imask, dst4);
delta_dst0 += w_stride;
delta_dst1 += w_stride;
delta_dst2 += w_stride;
delta_dst3 += w_stride;
delta_dst4 += w_stride;
} // for x
pdelta_src += out.width_;
pdelta_dst += h_stride2;
} // for y
} // for outc
} // for inc
}
// accumulate dw
if (out.width_ == 1 && out.height_ == 1) {
const float* pprev_out = &prev_out[0];
for (serial_size_t inc = 0; inc < in.depth_; ++inc, pprev_out += in_padded_area) {
VECTORIZE_ALIGN(32) float floats[28];
size_t in_padded_width = in_padded.width_;
_mm256_store_ps(&floats[0], _mm256_loadu_ps(pprev_out + in_padded_width * 0));
_mm256_storeu_ps(&floats[5], _mm256_loadu_ps(pprev_out + in_padded_width * 1));
_mm256_storeu_ps(&floats[10], _mm256_loadu_ps(pprev_out + in_padded_width * 2));
_mm256_storeu_ps(&floats[15], _mm256_loadu_ps(pprev_out + in_padded_width * 3));
_mm256_storeu_ps(&floats[20], _mm256_maskload_ps(pprev_out + in_padded_width * 4, imask));
__m256 prevos0 = _mm256_load_ps(&floats[0]);
__m256 prevos1 = _mm256_load_ps(&floats[8]);
__m256 prevos2 = _mm256_load_ps(&floats[16]);
__m128 prevos3 = _mm_load_ss(&floats[24]);
serial_size_t widx = 25 * inc;
serial_size_t widx_delta = 25 * in.depth_;
float* pdW = &dW[widx];
for (serial_size_t outc = 0; outc < out.depth_; outc++, pdW += widx_delta) {
if (!tbl.is_connected(outc, inc)) {
continue;
}
__m256 delta = _mm256_broadcast_ss(&curr_delta[outc]);
__m256 w0 = _mm256_loadu_ps(pdW+0);
__m256 w1 = _mm256_loadu_ps(pdW+8);
__m256 w2 = _mm256_loadu_ps(pdW + 16);
__m128 w3 = _mm_load_ss(pdW + 24);
w0 = madd256_ps(prevos0, delta, w0);
w1 = madd256_ps(prevos1, delta, w1);
w2 = madd256_ps(prevos2, delta, w2);
w3 = madd128_ss(prevos3, _mm256_castps256_ps128(delta), w3);
_mm256_storeu_ps(pdW + 0, w0);
_mm256_storeu_ps(pdW + 8, w1);
_mm256_storeu_ps(pdW+16, w2);
_mm_store_ss(pdW+24, w3);
}
}
} else {
// prepare load-mask beforehand
const size_t nblocks = out.width_ >> 3;
static const int32_t masks[] = {
-1, -1, -1, -1,
-1, -1, -1, -1,
0, 0, 0, 0,
0, 0, 0, 0,
};
const size_t remainder = out.width_ & 7;
__m256i mask = _mm256_loadu_si256((const __m256i*)(masks + 8 - remainder));
auto& weight = params.weight;
for (serial_size_t inc = 0; inc < in.depth_; ++inc) {
for (serial_size_t outc = 0; outc < out.depth_; outc++) {
if (!tbl.is_connected(outc, inc)) continue;
const float* delta = &curr_delta[out.get_index(0, 0, outc)];
serial_size_t widx = weight.get_index(0, 0, in.depth_ * outc + inc);
for (serial_size_t wy = 0; wy < 5 /* weight.height_ */; wy++) {
for (serial_size_t wx = 0; wx < 5 /* weight.width_ */; wx++) {
const float* prevo = &prev_out[in_padded.get_index(wx, wy, inc)];
if (w_stride > 1) {
float_t dst = float_t(0);
for (serial_size_t y = 0; y < params.out.height_; y++) {
serial_size_t prevo_idx = y * params.in_padded.width_ * params.h_stride;
serial_size_t delta_idx = y * params.out.width_;
for (serial_size_t x = 0; x < params.out.width_; x++) {
dst += prevo[prevo_idx + x * params.w_stride] * delta[delta_idx + x];
}
}
dW[widx] += dst;
}
else {
__m128 prev_sum = _mm_load_ss(&dW[widx]);
__m256 sum0 = _mm256_setzero_ps();
__m256 sum1 = _mm256_setzero_ps();
for (serial_size_t y = 0; y < out.height_; y++) {
// vectorize::dot
const float* pa = prevo + y * in_padded.width_ * params.h_stride;
const float* pb = delta + y * out.width_;
for (size_t i = 0; i < nblocks; ++i) {
__m256 a = _mm256_loadu_ps(pa + 8 * i);
__m256 b = _mm256_loadu_ps(pb + 8 * i);
sum0 = madd256_ps(a, b, sum0);
}
if (remainder) {
__m256 a = _mm256_maskload_ps(pa + 8 * nblocks, mask);
__m256 b = _mm256_maskload_ps(pb + 8 * nblocks, mask);
sum1 = madd256_ps(a, b, sum1);
}
}
sum1 = _mm256_and_ps(sum1, _mm256_castsi256_ps(mask));
__m256 sum = _mm256_add_ps(sum0, sum1);
_mm_store_ss(&dW[widx], _mm_add_ps(prev_sum, hsum256_ps(sum)));
}
++widx;
}
}
}
}
}
// accumulate db
if (params.has_bias) {
//fvec_t& db = *in_grad[2];
if (out.width_ == 1 && out.height_ == 1) {
for (serial_size_t outc = 0; outc < out.depth_; outc++) {
db[outc] += curr_delta[outc];
}
} else {
for (serial_size_t outc = 0; outc < out.depth_; outc++) {
const float *delta = &curr_delta[out.get_index(0, 0, outc)];
db[outc] += std::accumulate(delta, delta + out.width_ * out.height_, float(0));
}
}
}
} // avx_conv2d_5x5_back_kernel float ver
// double ver
template <typename Allocator>
void avx_conv2d_5x5_back_kernel(const core::conv_params& params,
const std::vector<std::vector<double, Allocator>>& prev_out,
const std::vector<double, Allocator>& W,
std::vector<std::vector<double, Allocator>>& dW,
std::vector<std::vector<double, Allocator>>& db,
std::vector<std::vector<double, Allocator>>& curr_delta,
std::vector<std::vector<double, Allocator>>& prev_delta) {
// backward-pass fallbacks to tiny-backend at float_t == double
conv2d_op_internal(prev_out, W, dW, db, curr_delta, prev_delta, params, true);
}
// float ver
template <typename Allocator>
void avx_conv2d_5x5_back_kernel(const core::conv_params& params,
const std::vector<std::vector<float, Allocator>>& prev_out,
const std::vector<float, Allocator>& W,
std::vector<std::vector<float, Allocator>>& dW,
std::vector<std::vector<float, Allocator>>& db,
std::vector<std::vector<float, Allocator>>& curr_delta,
std::vector<std::vector<float, Allocator>>& prev_delta) {
for_i(prev_out.size(), [&](int sample) {
avx_conv2d_5x5_back_kernel_one(params, prev_out[sample], W, dW[sample], db[sample],
curr_delta[sample], &prev_delta[sample]);
});
}
#endif // CNN_USE_AVX
inline void
conv2d_grad_op_avx(const tensor_t& prev_out,
const vec_t& W,
tensor_t& dW,
tensor_t& db,
tensor_t& curr_delta,
tensor_t& prev_delta,
const core::conv_params& params,
const bool layer_parallelize) {
#ifdef CNN_USE_AVX
if (params.weight.height_ == 5 && params.weight.width_ == 5) {
avx_conv2d_5x5_back_kernel(params, prev_out, W, dW, db, curr_delta, prev_delta);
return;
}
#endif
conv2d_op_internal(prev_out, W, dW, db, curr_delta,
prev_delta, params, layer_parallelize);
}
} // namespace kernels
} // namespace tiny_dnn
|