1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
/*
COPYRIGHT
All contributions by Taiga Nomi
Copyright (c) 2013, Taiga Nomi
All rights reserved.
All other contributions:
Copyright (c) 2013-2016, the respective contributors.
All rights reserved.
Each contributor holds copyright over their respective contributions.
The project versioning (Git) records all such contribution source information.
LICENSE
The BSD 3-Clause License
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of tiny-dnn nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
namespace tiny_dnn {
namespace kernels {
inline void
conv2d_op_internal(const tensor_t& in_data,
const vec_t& W,
const vec_t& bias,
tensor_t& out_data,
const core::conv_params& params,
const bool parallelize) {
for_i(parallelize, in_data.size(), [&](int sample) {
const vec_t& in = in_data[sample];
vec_t& a = out_data[sample];
for (serial_size_t o = 0; o < params.out.depth_; o++) {
for (serial_size_t inc = 0; inc < params.in.depth_; inc++) {
if (!params.tbl.is_connected(o, inc)) continue;
serial_size_t idx = 0;
idx = params.in.depth_ * o + inc;
idx = params.weight.get_index(0, 0, idx);
const float_t *pw = &W[idx];
idx = params.in_padded.get_index(0, 0, inc);
const float_t *pi = &in[idx];
idx = params.out.get_index(0, 0, o);
float_t *pa = &a[idx];
for (serial_size_t y = 0; y < params.out.height_; y++) {
for (serial_size_t x = 0; x < params.out.width_; x++) {
const float_t * ppw = pw;
const float_t * ppi = pi + params.in_padded.width_ *
(y * params.h_stride) +
x * params.w_stride;
float_t sum = float_t(0);
// should be optimized for small kernel(3x3,5x5)
for (serial_size_t wy = 0; wy < params.weight.height_; wy++) { // NOLINT
for (serial_size_t wx = 0; wx < params.weight.width_; wx++) { // NOLINT
idx = wy * params.in_padded.width_ + wx;
sum += *ppw++ * ppi[idx];
}
}
pa[y * params.out.width_ + x] += sum;
}
}
}
if (params.has_bias) {
float_t * pa = &a[params.out.get_index(0, 0, o)];
float_t * paa = pa + params.out.width_ * params.out.height_;
std::for_each(pa, paa, [&](float_t& f) { f += bias[o]; });
}
}
});
}
/******************************************************************/
template <typename tensor_t, typename vec_t>
void
conv2d_op_internal(const tensor_t& prev_out,
const vec_t& W,
tensor_t& dW,
tensor_t& db,
tensor_t& curr_delta,
tensor_t& prev_delta,
const core::conv_params& params,
const bool parallelize) {
typedef typename vec_t::value_type float_t;
for_i(parallelize, prev_out.size(), [&](int sample) {
// propagate delta to previous layer
for (serial_size_t inc = 0; inc < params.in.depth_; inc++) {
for (serial_size_t outc = 0; outc < params.out.depth_; outc++) {
if (!params.tbl.is_connected(outc, inc)) continue;
serial_size_t idx = 0;
idx = params.in.depth_ * outc + inc;
idx = params.weight.get_index(0, 0, idx);
const float_t *pw = &W[idx];
idx = params.out.get_index(0, 0, outc);
const float_t *pdelta_src = &curr_delta[sample][idx];
idx = params.in_padded.get_index(0, 0, inc);
//float_t *pdelta_dst = &(*prev_delta)[sample][idx];
float_t *pdelta_dst = &prev_delta[sample][idx];
for (serial_size_t y = 0; y < params.out.height_; y++) {
for (serial_size_t x = 0; x < params.out.width_; x++) {
const float_t * ppw = pw;
idx = y * params.out.width_ + x;
const float_t ppdelta_src = pdelta_src[idx];
float_t * ppdelta_dst = pdelta_dst +
y * params.h_stride * params.in_padded.width_ +
x * params.w_stride;
for (serial_size_t wy = 0; wy < params.weight.height_; wy++) { // NOLINT
for (serial_size_t wx = 0; wx < params.weight.width_; wx++) { // NOLINT
idx = wy * params.in_padded.width_ + wx;
ppdelta_dst[idx] += *ppw++ * ppdelta_src;
}
}
}
}
}
}
// accumulate dw
for (serial_size_t inc = 0; inc < params.in.depth_; inc++) {
for (serial_size_t outc = 0; outc < params.out.depth_; outc++) {
if (!params.tbl.is_connected(outc, inc)) continue;
for (serial_size_t wy = 0; wy < params.weight.height_; wy++) {
for (serial_size_t wx = 0; wx < params.weight.width_; wx++) {
float_t dst = float_t(0);
serial_size_t idx = 0;
idx = params.in_padded.get_index(wx, wy, inc);
const float_t * prevo = &prev_out[sample][idx];
idx = params.out.get_index(0, 0, outc);
const float_t * delta = &curr_delta[sample][idx];
if (params.w_stride > 1) {
for (serial_size_t y = 0; y < params.out.height_; y++) {
serial_size_t prevo_idx = y * params.in_padded.width_ * params.h_stride;
serial_size_t delta_idx = y * params.out.width_;
for (serial_size_t x = 0; x < params.out.width_; x++) {
dst += prevo[prevo_idx + x * params.w_stride] * delta[delta_idx + x];
}
}
} else {
for (serial_size_t y = 0; y < params.out.height_; y++) {
dst += vectorize::dot(
prevo + y * params.in_padded.width_ * params.h_stride,
delta + y * params.out.width_,
params.out.width_);
}
}
idx = params.in.depth_ * outc + inc;
dW[sample][params.weight.get_index(wx, wy, idx)] += dst;
}
}
}
}
// accumulate db
if (params.has_bias) {
for (serial_size_t outc = 0; outc < params.out.depth_; outc++) {
serial_size_t idx = params.out.get_index(0, 0, outc);
const float_t * delta = &curr_delta[sample][idx];
const float_t * deltaa = delta + params.out.width_ *
params.out.height_;
db[sample][outc] += std::accumulate(delta, deltaa, float_t(0));
}
}
});
}
} // namespace kernels
} // namespace tiny_dnn
|