File: conv2d_op_internal.h

package info (click to toggle)
tiny-dnn 1.0.0a3%2Bds-6
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,784 kB
  • sloc: cpp: 16,471; ansic: 11,829; lisp: 3,682; python: 3,422; makefile: 208
file content (218 lines) | stat: -rw-r--r-- 9,316 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/*
    COPYRIGHT

    All contributions by Taiga Nomi
    Copyright (c) 2013, Taiga Nomi
    All rights reserved.

    All other contributions:
    Copyright (c) 2013-2016, the respective contributors.
    All rights reserved.

    Each contributor holds copyright over their respective contributions.
    The project versioning (Git) records all such contribution source information.

    LICENSE

    The BSD 3-Clause License


    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice, this
      list of conditions and the following disclaimer.

    * Redistributions in binary form must reproduce the above copyright notice,
      this list of conditions and the following disclaimer in the documentation
      and/or other materials provided with the distribution.

    * Neither the name of tiny-dnn nor the names of its
      contributors may be used to endorse or promote products derived from
      this software without specific prior written permission.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
    DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
    FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
    CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
    OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once

namespace tiny_dnn {
namespace kernels {

inline void
conv2d_op_internal(const tensor_t&         in_data,
                   const vec_t&                  W,
                   const vec_t&               bias,
                   tensor_t&              out_data,
                   const core::conv_params& params,
                   const bool          parallelize) {
    for_i(parallelize, in_data.size(), [&](int sample) {
        const vec_t& in = in_data[sample];
        vec_t& a = out_data[sample];

        for (serial_size_t o = 0; o < params.out.depth_; o++) {
            for (serial_size_t inc = 0; inc < params.in.depth_; inc++) {
                if (!params.tbl.is_connected(o, inc)) continue;

                serial_size_t idx = 0;
                idx = params.in.depth_ * o + inc;
                idx = params.weight.get_index(0, 0, idx);
                const float_t *pw = &W[idx];

                idx = params.in_padded.get_index(0, 0, inc);
                const float_t *pi = &in[idx];

                idx = params.out.get_index(0, 0, o);
                float_t *pa = &a[idx];

                for (serial_size_t y = 0; y < params.out.height_; y++) {
                    for (serial_size_t x = 0; x < params.out.width_; x++) {
                        const float_t * ppw = pw;
                        const float_t * ppi = pi + params.in_padded.width_ *
                            (y * params.h_stride) +
                            x * params.w_stride;
                        float_t sum = float_t(0);

                        // should be optimized for small kernel(3x3,5x5)
                        for (serial_size_t wy = 0; wy < params.weight.height_; wy++) {    // NOLINT
                            for (serial_size_t wx = 0; wx < params.weight.width_; wx++) { // NOLINT
                                idx = wy * params.in_padded.width_ + wx;
                                sum += *ppw++ * ppi[idx];
                            }
                        }
                        pa[y * params.out.width_ + x] += sum;
                    }
                }
            }

            if (params.has_bias) {
                float_t * pa = &a[params.out.get_index(0, 0, o)];
                float_t * paa = pa + params.out.width_ * params.out.height_;
                std::for_each(pa, paa, [&](float_t& f) { f += bias[o]; });
            }
        }
    });
}


/******************************************************************/


template <typename tensor_t, typename vec_t>
void
conv2d_op_internal(const tensor_t&        prev_out,
                   const vec_t&                  W,
                   tensor_t&                    dW,
                   tensor_t&                    db,
                   tensor_t&            curr_delta,
                   tensor_t&            prev_delta,
                   const core::conv_params& params,
                   const bool          parallelize) {

    typedef typename vec_t::value_type float_t;

    for_i(parallelize, prev_out.size(), [&](int sample) {
        // propagate delta to previous layer
        for (serial_size_t inc = 0; inc < params.in.depth_; inc++) {
            for (serial_size_t outc = 0; outc < params.out.depth_; outc++) {
                if (!params.tbl.is_connected(outc, inc)) continue;

                serial_size_t idx = 0;
                idx = params.in.depth_ * outc + inc;
                idx = params.weight.get_index(0, 0, idx);
                const float_t *pw = &W[idx];

                idx = params.out.get_index(0, 0, outc);
                const float_t *pdelta_src = &curr_delta[sample][idx];

                idx = params.in_padded.get_index(0, 0, inc);
                //float_t *pdelta_dst = &(*prev_delta)[sample][idx];
                float_t *pdelta_dst = &prev_delta[sample][idx];

                for (serial_size_t y = 0; y < params.out.height_; y++) {
                    for (serial_size_t x = 0; x < params.out.width_; x++) {
                        const float_t * ppw = pw;

                        idx = y * params.out.width_ + x;
                        const float_t ppdelta_src = pdelta_src[idx];

                        float_t * ppdelta_dst = pdelta_dst +
                                y * params.h_stride * params.in_padded.width_ +
                                x * params.w_stride;

                        for (serial_size_t wy = 0; wy < params.weight.height_; wy++) {    // NOLINT
                            for (serial_size_t wx = 0; wx < params.weight.width_; wx++) { // NOLINT
                                idx = wy * params.in_padded.width_ + wx;
                                ppdelta_dst[idx] += *ppw++ * ppdelta_src;
                            }
                        }
                    }
                }
            }
        }

        // accumulate dw
        for (serial_size_t inc = 0; inc < params.in.depth_; inc++) {
            for (serial_size_t outc = 0; outc < params.out.depth_; outc++) {
                if (!params.tbl.is_connected(outc, inc)) continue;

                for (serial_size_t wy = 0; wy < params.weight.height_; wy++) {
                    for (serial_size_t wx = 0; wx < params.weight.width_; wx++) {
                        float_t dst = float_t(0);

                        serial_size_t idx = 0;
                        idx = params.in_padded.get_index(wx, wy, inc);
                        const float_t * prevo = &prev_out[sample][idx];

                        idx = params.out.get_index(0, 0, outc);
                        const float_t * delta = &curr_delta[sample][idx];

                        if (params.w_stride > 1) {
                            for (serial_size_t y = 0; y < params.out.height_; y++) {
                                serial_size_t prevo_idx = y * params.in_padded.width_ * params.h_stride;
                                serial_size_t delta_idx = y * params.out.width_;

                                for (serial_size_t x = 0; x < params.out.width_; x++) {
                                    dst += prevo[prevo_idx + x * params.w_stride] * delta[delta_idx + x];
                                }
                            }
                        } else {
                            for (serial_size_t y = 0; y < params.out.height_; y++) {
                                dst += vectorize::dot(
                                    prevo + y * params.in_padded.width_ * params.h_stride,
                                    delta + y * params.out.width_,
                                    params.out.width_);
                            }
                        }


                        idx = params.in.depth_ * outc + inc;
                        dW[sample][params.weight.get_index(wx, wy, idx)] += dst;
                    }
                }
            }
        }

        // accumulate db
        if (params.has_bias) {
            for (serial_size_t outc = 0; outc < params.out.depth_; outc++) {
                serial_size_t idx = params.out.get_index(0, 0, outc);
                const float_t * delta = &curr_delta[sample][idx];
                const float_t * deltaa = delta + params.out.width_ *
                    params.out.height_;
                db[sample][outc] += std::accumulate(delta, deltaa, float_t(0));
            }
        }
    });
}

}  // namespace kernels
}  // namespace tiny_dnn