1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
/*
COPYRIGHT
All contributions by Taiga Nomi
Copyright (c) 2013, Taiga Nomi
All rights reserved.
All other contributions:
Copyright (c) 2013-2016, the respective contributors.
All rights reserved.
Each contributor holds copyright over their respective contributions.
The project versioning (Git) records all such contribution source information.
LICENSE
The BSD 3-Clause License
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of tiny-cnn nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "tiny_dnn/core/framework/op_kernel.h"
#ifdef CNN_USE_LIBDNN
#include "libdnn.hpp"
#endif
namespace tiny_dnn {
class Conv2dLibDNNForwardOp : public core::OpKernel {
public:
explicit Conv2dLibDNNForwardOp(const core::OpKernelConstruction& context)
: core::OpKernel(context)
#ifdef CNN_USE_LIBDNN
, initialized_(false)
#endif
{
// TODO(edgar): remove this if statement when refactor
// the init_backend() routine at layer level.
if (OpKernel::device_ != nullptr) {
auto params = OpKernel::params_->conv();
init_libdnn(OpKernel::device_, params);
}
}
void compute(const core::OpKernelContext& context) override {
#ifdef CNN_USE_LIBDNN
// incoming/outcoming datm
const tensor_t& in_data = context.input(0);
const tensor_t& W = context.input(1);
const tensor_t& bias = context.input(2);
tensor_t& out_data = context.output(1);
// retrieve the convolutional parameters and pad input
// Conv2d::setParams(context.params());
// initialize outputs
fill_tensor(out_data, float_t(0));
// retrive device context and queue
CLCudaAPI::Context ctx = OpKernel::device_->context();
CLCudaAPI::Queue queue = OpKernel::device_->queue();
for (serial_size_t i = 0; i < in_data.size(); ++i) {
// allocate data to GPU
auto dev_in = CLCudaAPI::Buffer<float_t>(ctx, queue,
in_data[i].begin(), in_data[i].end());
auto dev_W = CLCudaAPI::Buffer<float_t>(ctx, queue,
W[0].begin(), W[0].end());
auto dev_bias = CLCudaAPI::Buffer<float_t>(ctx, queue,
bias[0].begin(), bias[0].end());
auto dev_out = CLCudaAPI::Buffer<float_t>(ctx, queue,
out_data[i].begin(), out_data[i].end());
// cast data types and call libdnn
// TODO(edgar): set a global variable with batch size or
// embedd this inside the next gen Tensor class.
const int batch_size = 1;
const float_t* input_ptr = double_cast(dev_in());
const float_t* weights_ptr = double_cast(dev_W());
const float_t* bias_ptr = double_cast(dev_bias());
float_t* output_ptr = mutable_double_cast(dev_out());
// first time, tune the kernel
// TODO(edgar/naibaf): enable when second generation
// kernel are available
if (!initialized_) {
/*kernel_->Tune(const_cast<float_t*>(output_ptr), nullptr,
const_cast<float_t*>(weights_ptr), nullptr,
const_cast<float_t*>(bias_ptr), nullptr,
const_cast<float_t*>(input_ptr), nullptr,
batch_size);
initialized_ = true;*/
}
// call libdnn forward
kernel_->Forward(input_ptr,
weights_ptr,
bias_ptr,
output_ptr,
batch_size);
// Upload data GPU -> CPU
/*std::vector<float_t> dev_W_shadow(W.size(), 0);
dev_W.Read(queue, W.size(), dev_W_shadow);
// FOR DEBUG ONLY
nn_warn("W kernel");
for (serial_size_t j = 0; j < W.size(); ++j) {
std::cout << dev_W_shadow[j] << " ";
}
std::cout << std::endl;
// Upload data GPU -> CPU
std::vector<float_t> dev_in_shadow(in_data_padded[i].size(), 0);
dev_in.Read(queue, in_data_padded[i].size(), dev_in_shadow);
// FOR DEBUG ONLY
nn_warn("input kernel");
for (serial_size_t j = 0; j < in_data_padded[i].size(); ++j) {
std::cout << dev_in_shadow[j] << " ";
}
std::cout << std::endl;*/
// Upload data GPU -> CPU
// TODO(edgar): trigger this only when is needed
std::vector<float_t> out(out_data[i].size(), 0);
dev_out.Read(queue, out_data[i].size(), out);
/*
// FOR DEBUG ONLY
nn_warn("output kernel");
for (serial_size_t j = 0; j < out.size(); ++j) {
std::cout << out[j] << " ";
}
std::cout << std::endl;
*/
// copy data to be activated
std::copy(std::begin(out), std::end(out), std::begin(out_data[i]));
}
#else
throw nn_error("TinyDNN was not compiled with LibDNN support.");
#endif
}
private:
#ifdef CNN_USE_LIBDNN
float_t* mutable_double_cast(const cl_mem cl_mem_gpu) {
return static_cast<float_t*>(
reinterpret_cast<void*>(cl_mem_gpu));
}
const float_t* double_cast(const cl_mem cl_mem_gpu) {
return reinterpret_cast<const float_t*>(
reinterpret_cast<const void*>(cl_mem_gpu));
}
#endif
void init_libdnn(const Device* device, const core::conv_params& params) {
#ifdef CNN_USE_LIBDNN
assert(device != nullptr);
// Context needs to be initialized with one device and queue
greentea::device::setupViennaCLContext(device->deviceId(),
device->context()(), device->device()(), device->queue()());
dev_ptr_ =
std::make_shared<greentea::device>(
device->deviceId(),
device->deviceId(), /* list_id, */
// TODO(edgar): refactor this since it's possible
// to have OpenCL and CUDA.
#if defined(USE_OPENCL)
greentea::Backend::BACKEND_OpenCL
#elif defined(USE_CUDA)
greentea::Backend::BACKEND_CUDA
#else
greentea::Backend::BACKEND_CPU
#endif
);
// Initialize device pointer in libdnn
dev_ptr_->Init();
// Setup libdnn params
greentea::LibDNNConfig config;
config.dev_ptr = dev_ptr_.get();
// NCHW shape setups
const float_t dy = params.in_padded.height_ - params.in.height_;
const float_t dx = params.in_padded.width_ - params.in.width_;
std::vector<int32_t> in_shape = {
1,
params.in.depth_,
params.in.height_,
params.in.width_
};
std::vector<int32_t> out_shape = {
1,
params.out.depth_,
params.out.height_,
params.out.width_
};
std::vector<int32_t> kernel = {
params.weight.height_,
params.weight.width_
};
std::vector<int32_t> pad = { dy/2, dx/2 };
std::vector<int32_t> stride = {
params.h_stride,
params.w_stride
};
std::vector<int32_t> dilation = { 1, 1 };
config.in_shape = in_shape;
config.out_shape = out_shape;
config.pad = pad;
config.kernel = kernel;
config.stride = stride;
config.dilation = dilation;
config.group = 1;
config.bias_term = params.has_bias;
// Disables some optimizations but may give more stable results
config.fast_unsafe_math = false;
// Disables backward pass of weights during kernel.Backward();
config.weights_backward = false;
// Disables backward pass for bias during kernel.Backward();
config.bias_backward = false;
// (Disabling bias and weight backward pass only propagates the data gradient (error))
if (std::is_same<float_t, float>::value ||
dev_ptr_->CheckCapability("cl_khr_int64_base_atomics")) {
config.wgalgo = greentea::LIBDNN_CONVOLUTION_WG_ALGO_ATOMIC;
config.bwalgo = greentea::LIBDNN_CONVOLUTION_BW_ALGO_COL2IM_ATOMIC;
} else {
config.wgalgo = greentea::LIBDNN_CONVOLUTION_WG_ALGO_DIRECT;
config.bwalgo = greentea::LIBDNN_CONVOLUTION_BW_ALGO_IM2COL;
}
// generate sources and compile kernel
kernel_.reset(new greentea::LibDNNConv<float_t>(config));
#endif
}
private:
#ifdef CNN_USE_LIBDNN
std::shared_ptr<greentea::device> dev_ptr_;
std::shared_ptr<greentea::LibDNNConv<float_t> > kernel_;
bool initialized_;
#endif
};
class Conv2dLibDNNBackwardOp : public core::OpKernel {
public:
explicit Conv2dLibDNNBackwardOp(const core::OpKernelConstruction& context)
: core::OpKernel(context) {}
void compute(const core::OpKernelContext& context) override {
throw nn_error("Not implemented yet.");
}
};
} // namespace tiny_dnn
|