1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
/*
Copyright (c) 2016, Taiga Nomi, Edgar Riba
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "tiny_dnn/core/params/deconv_params.h"
#include "tiny_dnn/core/kernels/tiny_quantization_kernel.h"
namespace tiny_dnn {
namespace core {
namespace kernels {
inline void tiny_quantized_deconv2d_kernel(const deconv_params& params,
const vec_t& in,
const vec_t& W,
const vec_t& bias,
vec_t& a,
const bool layer_parallelize) {
// image quantization
float_t min_input(in[0]);
float_t max_input(in[0]);
for (serial_size_t inc = 0; inc < params.in.depth_; inc++) {
for (serial_size_t ins = 0; ins < params.in.height_*params.in.height_; ins++) {
serial_size_t idx = params.in.get_index(0, 0, inc);
min_input = std::min(min_input, (&in[idx])[ins]);
max_input = std::max(max_input, (&in[idx])[ins]);
}
}
std::vector<uint8_t> in_quantized =
float_tensor_to_quantized<uint8_t>(in, min_input, max_input);
// filter quantization
float_t min_filter(W[0]);
float_t max_filter(W[0]);
for (serial_size_t inc = 0; inc < params.in.depth_; inc++) {
for (serial_size_t ins = 0; ins < params.weight.height_*params.weight.height_; ins++) {
serial_size_t idx = params.in.get_index(0, 0, inc);
min_filter = std::min(min_filter, (&W[idx])[ins]);
max_filter = std::max(max_filter, (&W[idx])[ins]);
}
}
if (min_filter == max_filter) {
max_filter = W[0] + 1e-3f;
min_filter = W[0] - 1e-3f;
}
std::vector<uint8_t> W_quantized =
float_tensor_to_quantized<uint8_t>(W, min_filter, max_filter);
// bias quantization
float_t min_bias(0);
float_t max_bias(0);
std::vector<uint8_t> bias_quantized;
if (params.has_bias) {
for (serial_size_t inc = 0; inc < params.out.depth_; inc++) {
min_bias = std::min(min_bias, bias[inc]);
max_bias = std::max(max_bias, bias[inc]);
}
if (min_bias == max_bias) {
max_bias = bias[0] + 1e-3f;
min_bias = bias[0] - 1e-3f;
}
bias_quantized =
float_tensor_to_quantized<uint8_t>(bias, min_bias, max_bias);
}
// output range
float_t min_output_value;
float_t max_output_value;
quantization_range_for_multiplication<uint8_t, uint8_t, int32_t>(
min_input, max_input, min_filter, max_filter, &min_output_value,
&max_output_value);
std::vector<int32_t> a_quantized(a.size(), static_cast<int32_t>(0));
// calculating offset
const int32_t offset_input =
int64_to_int32(float_to_quantized_unclamped<uint8_t>(0.0f, min_input, max_input));
const int32_t offset_filter =
int64_to_int32(float_to_quantized_unclamped<uint8_t>(0.0f, min_filter, max_filter));
const int32_t zero_in_total_space =
int64_to_int32(float_to_quantized<int32_t>(0.0f, min_output_value, max_output_value));
for_i(layer_parallelize, params.out.depth_, [&](int o) {
for (serial_size_t inc = 0; inc < params.in.depth_; inc++) {
if (!params.tbl.is_connected(o, inc)) continue;
serial_size_t idx = 0;
idx = params.in.depth_ * o + inc;
idx = params.weight.get_index(0, 0, idx);
const uint8_t *pw = &W_quantized[idx];
idx = params.in.get_index(0, 0, inc);
const uint8_t *pi = &in_quantized[idx];
idx = params.out.get_index(0, 0, o);
int32_t *pa_quantized = &a_quantized[idx];
for (serial_size_t y = 0; y < params.in.height_; y++) {
for (serial_size_t x = 0; x < params.in.width_; x++) {
const uint8_t * ppw = pw;
const uint8_t * ppi = pi + y * params.in.width_ + x;
// should be optimized for small kernel(3x3,5x5)
for (serial_size_t wy = 0; wy < params.weight.height_; wy++) {
for (serial_size_t wx = 0; wx < params.weight.width_; wx++) {
pa_quantized[(y * params.h_stride + wy) *
params.out.width_ + (x *
params.w_stride + wx)] += static_cast<int32_t>(ppw[wy *
params.weight.width_ + wx] - offset_filter) *
static_cast<int32_t>(*ppi - offset_input);
}
}
}
}
}
if (params.has_bias) {
int32_t * pa_quantized = &a_quantized[params.out.get_index(0, 0, o)];
int32_t * paa_quantized = pa_quantized + params.out.width_ * params.out.height_;
std::for_each(pa_quantized, paa_quantized, [&](int32_t& f) {
f += (bias_quantized[o] - zero_in_total_space);
});
}
});
float_t min_output_requantized;
float_t max_output_requantized;
std::vector<uint8_t> a_requantized(a_quantized.size(), static_cast<uint8_t>(0));
// Requantize from 32bits to 8 bits for next layer
quantize_down_and_shrink_range<int32_t, uint8_t>(a_quantized, min_output_value, max_output_value,
&min_output_requantized, &max_output_requantized, &a_requantized);
// dequantize to flaot, this could be removed within concatenated quantized network
a = quantized_tensor_to_float<uint8_t>(a_requantized, min_output_requantized, max_output_requantized);
}
inline void tiny_quantized_deconv2d_back_kernel(const deconv_params& params,
const vec_t& prev_out,
const vec_t& W,
vec_t& dW,
vec_t& db,
vec_t& curr_delta,
vec_t* prev_delta) {
// previous output quantization
float_t min_prev_out(prev_out[0]);
float_t max_prev_out(prev_out[0]);
for (serial_size_t inc = 0; inc < params.in.depth_; inc++) {
for (serial_size_t ins = 0; ins < params.in.height_*params.in.height_; ins++) {
serial_size_t idx = params.in.get_index(0, 0, inc);
min_prev_out = std::min(min_prev_out, (&prev_out[idx])[ins]);
max_prev_out = std::max(min_prev_out, (&prev_out[idx])[ins]);
}
}
std::vector<uint8_t> prev_out_quantized =
float_tensor_to_quantized<uint8_t>(prev_out, min_prev_out, max_prev_out);
// filter quantization
float_t min_filter(W[0]);
float_t max_filter(W[0]);
for (serial_size_t inc = 0; inc < params.in.depth_; inc++) {
for (serial_size_t ins = 0; ins < params.weight.height_*params.weight.height_; ins++) {
serial_size_t idx = params.in.get_index(0, 0, inc);
min_filter = std::min(min_filter, (&W[idx])[ins]);
max_filter = std::max(max_filter, (&W[idx])[ins]);
}
}
if (min_filter == max_filter) {
max_filter = W[0] + 1e-3f;
min_filter = W[0] - 1e-3f;
}
std::vector<uint8_t> W_quantized =
float_tensor_to_quantized<uint8_t>(W, min_filter, max_filter);
// current delta quantization
float_t min_curr_delta(curr_delta[0]);
float_t max_curr_delta(curr_delta[0]);
for (serial_size_t inc = 0; inc < params.out.depth_; inc++) {
for (serial_size_t ins = 0; ins < params.out.height_*params.out.height_; ins++) {
serial_size_t idx = params.out.get_index(0, 0, inc);
min_curr_delta = std::min(min_curr_delta, (&curr_delta[idx])[ins]);
max_curr_delta = std::max(max_curr_delta, (&curr_delta[idx])[ins]);
}
}
std::vector<uint8_t> curr_delta_quantized =
float_tensor_to_quantized<uint8_t>(curr_delta, min_curr_delta, max_curr_delta);
// output range for previous delta
float_t min_prev_delta_value;
float_t max_prev_delta_value;
quantization_range_for_multiplication<uint8_t, uint8_t, int32_t>(
min_curr_delta, max_curr_delta, min_filter, max_filter, &min_prev_delta_value,
&max_prev_delta_value);
std::vector<int32_t> prev_delta_quantized(prev_delta->size(), static_cast<int32_t>(0));
// output range for dW
float_t min_dW_value;
float_t max_dW_value;
quantization_range_for_multiplication<uint8_t, uint8_t, int32_t>(
min_curr_delta, max_curr_delta, min_prev_out, max_prev_out, &min_dW_value,
&max_dW_value);
std::vector<int32_t> dW_quantized(dW.size(), static_cast<int32_t>(0));
// calculating offset
// TODO wangdiya: do we need to check overflows?
const int32_t offset_prev_out =
int64_to_int32(float_to_quantized_unclamped<uint8_t>(0.0f, min_prev_out, max_prev_out));
const int32_t offset_filter =
int64_to_int32(float_to_quantized_unclamped<uint8_t>(0.0f, min_filter, max_filter));
const int32_t offset_curr_delta =
int64_to_int32(float_to_quantized_unclamped<uint8_t>(0.0f, min_curr_delta, max_curr_delta));
// const int32_t zero_in_prev_delta =
// float_to_quantized<int32_t>(0.0f, min_prev_delta_value, max_prev_delta_value);
// propagate delta to previous layer
for_i(params.in.depth_, [&](int inc) {
for (serial_size_t outc = 0; outc < params.out.depth_; outc++) {
if (!params.tbl.is_connected(outc, inc)) continue;
serial_size_t idx = 0;
idx = params.in.depth_ * outc + inc;
idx = params.weight.get_index(0, 0, idx);
const uint8_t *pw = &W_quantized[idx];
idx = params.out_unpadded.get_index(0, 0, outc);
const uint8_t *pdelta_src = &curr_delta_quantized[idx];
idx = params.in.get_index(0, 0, inc);
int32_t *pdelta_quantized_dst = &(prev_delta_quantized)[idx];
for (serial_size_t y = 0; y < params.in.height_; y++) {
for (serial_size_t x = 0; x < params.in.width_; x++) {
const uint8_t * ppw = pw;
int32_t * ppdelta_quantized_dst = pdelta_quantized_dst + y * params.in.width_ + x;
int32_t sum = int32_t(0);
for (serial_size_t wy = 0; wy < params.weight.height_; wy++) {
for (serial_size_t wx = 0; wx < params.weight.width_; wx++) {
sum += static_cast<int32_t>(ppw[wy * params.weight.width_ + wx] - offset_filter) *
static_cast<int32_t>(pdelta_src[(y * params.h_stride + wy) *
params.out.width_ + (x *
params.w_stride + wx)] -
offset_curr_delta);
}
}
*ppdelta_quantized_dst += sum;
}
}
}
});
float_t min_prev_delta_requantized;
float_t max_prev_delta_requantized;
std::vector<uint8_t> prev_delta_requantized(prev_delta_quantized.size(), static_cast<uint8_t>(0));
// Requantize from 32bits to 8 bits for next layer
quantize_down_and_shrink_range<int32_t, uint8_t>(prev_delta_quantized, min_prev_delta_value, max_prev_delta_value,
&min_prev_delta_requantized, &max_prev_delta_requantized, &prev_delta_requantized);
// dequantize to flaot, this could be removed within concatenated quantized network
vec_t prev_delta_vec = quantized_tensor_to_float<uint8_t>(prev_delta_requantized, min_prev_delta_requantized, max_prev_delta_requantized);
prev_delta = &prev_delta_vec;
// Accumulate dw
for_i(params.in.depth_, [&](int inc) {
for (serial_size_t outc = 0; outc < params.out.depth_; outc++) {
if (!params.tbl.is_connected(outc, inc)) continue;
for (serial_size_t wy = 0; wy < params.weight.height_; wy++) {
for (serial_size_t wx = 0; wx < params.weight.width_; wx++) {
int32_t dst = int32_t(0);
serial_size_t idx = 0;
idx = params.in.get_index(0, 0, inc);
const uint8_t * prevo = &prev_out_quantized[idx];
idx = params.out.get_index(wx, wy, outc);
const uint8_t * delta = &curr_delta_quantized[idx];
for (serial_size_t y = 0; y < params.in.height_; y++) {
for (serial_size_t x = 0; x < params.in.width_; x++) {
dst += (static_cast<int32_t>(*(prevo + y * params.in.width_ + x)) - offset_prev_out) *
(static_cast<int32_t>(*(delta + y * params.out.width_ + x)) - offset_curr_delta);
}
}
idx = params.in.depth_ * outc + inc;
dW_quantized[params.weight.get_index(wx, wy, idx)] += dst;
}
}
}
});
float_t min_dW_requantized;
float_t max_dW_requantized;
std::vector<uint8_t> dW_requantized(dW_quantized.size(), static_cast<uint8_t>(0));
// requantize from 32bits to 8 bits for next layer
quantize_down_and_shrink_range<int32_t, uint8_t>(dW_quantized, min_dW_value, max_dW_value,
&min_dW_requantized, &max_dW_requantized, &dW_requantized);
// dequantize to flaot, this could be removed within concatenated quantized network
dW = quantized_tensor_to_float<uint8_t>(dW_requantized, min_dW_requantized, max_dW_requantized);
// Accumulate db
if (params.has_bias) {
//vec_t& db = *in_grad[2];
for (serial_size_t outc = 0; outc < params.out.depth_; outc++) {
serial_size_t idx = params.out.get_index(0, 0, outc);
const float_t * delta = &curr_delta[idx];
const float_t * deltaa = delta + params.out.width_ *
params.out.height_;
db[outc] += std::accumulate(delta, deltaa, float_t(0));
}
}
}
inline void tiny_quantized_deconv2d_kernel(const deconv_params& params,
const vec_t& in,
const vec_t& W,
const vec_t& bias,
const vec_t& in_r,
const vec_t& W_r,
const vec_t& b_r,
vec_t& a,
vec_t& a_r,
const bool layer_parallelize) {
// filter range
float_t min_filter(W_r[0]);
float_t max_filter(W_r[1]);
if (W_r[0] == W_r[1]) {
max_filter = W_r[1] + 1e-3f;
min_filter = W_r[0] - 1e-3f;
}
// bias range
float_t min_bias(b_r[0]);
float_t max_bias(b_r[1]);
if (params.has_bias) {
if (min_bias == max_bias) {
max_bias = b_r[1] + 1e-3f;
min_bias = b_r[0] - 1e-3f;
}
}
// output range
float_t min_output_value;
float_t max_output_value;
quantization_range_for_multiplication<uint8_t, uint8_t, int32_t>(
in_r[0], in_r[1], min_filter, max_filter, &min_output_value,
&max_output_value);
// data type restore
std::vector<uint8_t> in_quantized, W_quantized, bias_quantized;
for (size_t i = 0; i < in.size(); i++) {
in_quantized.push_back(static_cast<uint8_t>(in[i]));
}
for (size_t i = 0; i < W.size(); i++) {
W_quantized.push_back(static_cast<uint8_t>(W[i]));
}
for (size_t i = 0; i < bias.size(); i++) {
bias_quantized.push_back(static_cast<uint8_t>(bias[i]));
}
std::vector<int32_t> a_quantized(a.size(), static_cast<int32_t>(0));
// calculating offset
const int32_t offset_input =
int64_to_int32(float_to_quantized_unclamped<uint8_t>(0.0f, in_r[0], in_r[1]));
const int32_t offset_filter =
int64_to_int32(float_to_quantized_unclamped<uint8_t>(0.0f, min_filter, max_filter));
const int32_t zero_in_total_space =
int64_to_int32(float_to_quantized<int32_t>(0.0f, min_output_value, max_output_value));
for_i(layer_parallelize, params.out.depth_, [&](int o) {
for (serial_size_t inc = 0; inc < params.in.depth_; inc++) {
if (!params.tbl.is_connected(o, inc)) continue;
serial_size_t idx = 0;
idx = params.in.depth_ * o + inc;
idx = params.weight.get_index(0, 0, idx);
const uint8_t *pw = &W_quantized[idx];
idx = params.in.get_index(0, 0, inc);
const uint8_t *pi = &in_quantized[idx];
idx = params.out.get_index(0, 0, o);
int32_t *pa_quantized = &a_quantized[idx];
for (serial_size_t y = 0; y < params.in.height_; y++) {
for (serial_size_t x = 0; x < params.in.width_; x++) {
const uint8_t * ppw = pw;
const uint8_t * ppi = pi + y * params.in.width_ + x;
// should be optimized for small kernel(3x3,5x5)
for (serial_size_t wy = 0; wy < params.weight.height_; wy++) {
for (serial_size_t wx = 0; wx < params.weight.width_; wx++) {
pa_quantized[(y * params.h_stride + wy) *
params.out.width_ + (x *
params.w_stride + wx)] += static_cast<int32_t>(ppw[wy *
params.weight.width_ + wx] - offset_filter) *
static_cast<int32_t>(*ppi - offset_input);
}
}
}
}
}
if (params.has_bias) {
int32_t * pa_quantized = &a_quantized[params.out.get_index(0, 0, o)];
int32_t * paa_quantized = pa_quantized + params.out.width_ * params.out.height_;
std::for_each(pa_quantized, paa_quantized, [&](int32_t& f) {
f += static_cast<int32_t>((bias[o] - zero_in_total_space));
});
}
});
float_t min_output_requantized;
float_t max_output_requantized;
std::vector<uint8_t> a_requantized(a_quantized.size(), static_cast<uint8_t>(0));
// Requantize from 32bits to 8 bits for next layer
quantize_down_and_shrink_range<int32_t, uint8_t>(a_quantized, min_output_value, max_output_value,
&min_output_requantized, &max_output_requantized, &a_requantized);
// store directly in float datatype
for (size_t i = 0; i < a_requantized.size(); i++) {
a[i] = static_cast<float>(a_requantized[i]);
}
a_r[0] = min_output_requantized;
a_r[1] = max_output_requantized;
}
} // namespace kernels
} // namespace core
} // namespace tiny_dnn
|