1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
# Copyright 2012-2016 Tinyarray authors.
#
# This file is part of Tinyarray. It is subject to the license terms in the
# file LICENSE.rst found in the top-level directory of this distribution and
# at https://gitlab.kwant-project.org/kwant/tinyarray/blob/master/LICENSE.rst.
# A list of Tinyarray authors can be found in the README.rst file at the
# top-level directory of this distribution and at
# https://gitlab.kwant-project.org/kwant/tinyarray.
import operator, warnings
import platform
import itertools as it
import tinyarray as ta
from pytest import raises
import numpy as np
from numpy.testing import assert_equal, assert_almost_equal
import sys
import ctypes
import random
# numpy.testing.assert_equal() is still used even with pytest, since it does
# the right thing for arrays containing anomalous values (e.g. NaNs).
def machine_wordsize():
bits, _ = platform.architecture()
if bits == '32bit':
return 4
elif bits == '64bit':
return 8
else:
raise RuntimeError('unknown architecture', bits)
dtypes = [int, float, complex]
some_shapes = [(), 0, 1, 2, 3,
(0, 0), (1, 0), (0, 1), (2, 2), (17, 17),
(0, 0, 0), (1, 1, 1), (2, 2, 1), (2, 0, 3)]
def make(shape, dtype):
result = np.arange(np.prod(shape), dtype=int)
if dtype in (float, complex):
result = result + 0.1 * result
if dtype == complex:
result = result + -0.5j * result
return result.reshape(shape)
def shape_of_seq(seq, r=()):
try:
l = len(seq)
except:
return r
if l == 0:
return r + (0,)
return shape_of_seq(seq[0], r + (l,))
def test_array():
for dtype in dtypes:
for a_shape in some_shapes:
a = make(a_shape, dtype)
# Creation from list. This also tests creation from scalars.
l = a.tolist()
b = ta.array(l)
b_shape = shape_of_seq(l)
# a_shape and b_shape are not always equal.
# Example: a_shape == (0, 0), b_shape = (0,).
assert isinstance(repr(b), str)
assert b.ndim == len(b_shape)
assert tuple(b.shape) == b_shape
assert b.size == a.size
if a_shape != ():
assert len(b) == len(a)
assert_equal(np.array(ta.array(b)), np.array(l))
else:
assert b.dtype == dtype
raises(TypeError, len, b)
if sys.version_info[:2] > (2, 6):
# Python 2.6 does not have memoryview.
assert memoryview(b).tobytes() == memoryview(a).tobytes()
assert_equal(np.array(b), np.array(l))
assert ta.transpose(l) == np.transpose(l)
# Here, the tinyarray is created via the buffer interface. It's
# possible to distinguish shape 0 from (0, 0).
b = ta.array(a)
# This tests creation of arrays from non-C-contiguous buffers.
assert b == ta.array(a.transpose()).transpose()
assert isinstance(repr(b), str)
assert b.ndim == len(b.shape)
assert b.shape == a.shape
assert b.size == a.size
assert b == a
assert_equal(np.array(b), a)
if a_shape != ():
assert len(b) == len(a)
else:
raises(TypeError, len, b)
if sys.version_info[:2] > (2, 6):
# Python 2.6 does not have memoryview.
assert memoryview(b).tobytes() == memoryview(a).tobytes()
assert ta.transpose(b) == np.transpose(a)
# Check creation from NumPy matrix. This only works for Python >
# 2.6. I don't know whether this is our bug or their's.
if sys.version_info[:2] > (2, 6):
if not isinstance(a_shape, tuple) or len(a_shape) <= 2:
b = ta.array(np.matrix(a))
assert b.ndim == 2
assert b == np.matrix(a)
l = []
for i in range(16):
l = [l]
raises(ValueError, ta.array, l, dtype)
raises(TypeError, ta.array, [0, [0, 0]], dtype)
raises(ValueError, ta.array, [[0], [0, 0]], dtype)
raises(ValueError, ta.array, [[0, 0], 0], dtype)
raises(ValueError, ta.array, [[0, 0], [0]], dtype)
raises(ValueError, ta.array, [[0, 0], [[0], [0]]], dtype)
def test_matrix():
for l in [(), 3, (3,), ((3,)), (1, 2), ((1, 2), (3, 4))]:
a = ta.matrix(l)
b = np.matrix(l)
assert a == b
assert a.shape == b.shape
a = ta.matrix(ta.array(l))
assert a == b
assert a.shape == b.shape
a = ta.matrix(np.array(l))
assert a == b
assert a.shape == b.shape
if sys.version_info[:2] > (2, 6):
# Creation of tinyarrays from NumPy matrices only works for Python >
# 2.6. I don't know whether this is our bug or their's.
a = ta.matrix(b)
assert a == b
for l in [(((),),), ((3,), ()), ((1, 2), (3,))]:
raises(ValueError, ta.matrix, l)
def test_conversion():
for src_dtype in dtypes:
for dest_dtype in dtypes:
src = ta.zeros(3, src_dtype)
tsrc = tuple(src)
npsrc = np.array(tsrc)
impossible = src_dtype is complex and dest_dtype in [int, float]
for s in [src, tsrc, npsrc]:
if impossible:
raises(TypeError, ta.array, s, dest_dtype)
else:
dest = ta.array(s, dest_dtype)
assert isinstance(dest[0], dest_dtype)
assert src == dest
# Determine maximum value of the C "long" type. This is different from
# sys.maxsize, notably on 64 bit Windows.
maxlong = 2 ** (ctypes.sizeof(ctypes.c_long) * 8 - 1) - 1
# Check correct overflow detection when integers are used to initialize
# integer tinyarrays.
for n in [10**100, -10**100, 123 * 10**20, -2 * maxlong,
maxlong + 1, np.array(maxlong + 1),
-maxlong - 2]:
raises(OverflowError, ta.array, n, int)
# Same as above, but check that values just under the threshold of overflow
# do work.
for n in [maxlong, np.array(maxlong),
-maxlong - 1, np.array(-maxlong - 1)]:
ta.array(n, int)
# Check correct overflow detection when floating point numbers are used to
# initialize integer tinyarrays.
#
# Correct overflow detection is tricky when tinyarray integers are 64 bit,
# since the distance between adjacent floating point numbers is larger than
# one for numbers corresponding to large integers.
#
# The following assumes that Python floats are common double-precision IEEE
# numbers.
n = maxlong + 1
for dtype in [float, np.float64, np.float32]:
# The following assumes that n can be represented exactly. This should
# be true for typical (all?) architectures.
assert dtype(n) == n
for factor in [1, 1.0001, 1.1, 2, 5, 123, 1e5]:
for x in [n, min(-n-1, np.nextafter(-n, -np.inf, dtype=dtype))]:
x = dtype(factor) * dtype(x)
raises(OverflowError, ta.array, x, int)
if dtype is not float:
# This solicitates the buffer interface.
x = np.array(x)
assert(x.dtype == dtype)
raises(OverflowError, ta.array, x, int)
for x in [-n, min(n-1, np.nextafter(n, 0, dtype=dtype))]:
x = dtype(x) / dtype(factor)
ta.array(x, int)
if dtype is not float:
# This solicitates the buffer interface.
x = np.array(x)
assert(x.dtype == dtype)
ta.array(x, int)
def test_special_constructors():
for dtype in dtypes:
for shape in some_shapes:
assert ta.zeros(shape, dtype) == np.zeros(shape, dtype)
assert ta.ones(shape, dtype) == np.ones(shape, dtype)
for n in [0, 1, 2, 3, 17]:
assert ta.identity(n, dtype) == np.identity(n, dtype)
def test_dot():
# Check acceptance of non-tinyarray arguments.
assert ta.dot([1, 2], (3, 4)) == 11
for dtype in dtypes:
shape_pairs = [(1, 1), (2, 2), (3, 3),
(0, 0),
(0, (0, 1)), ((0, 1), 1),
(0, (0, 2)), ((0, 2), 2),
(1, (1, 2)), ((2, 1), 1),
(2, (2, 1)), ((1, 2), 2),
(2, (2, 3)), ((3, 2), 2),
((1, 1), (1, 1)), ((2, 2), (2, 2)),
((3, 3), (3, 3)), ((2, 3), (3, 2)), ((2, 1), (1, 2)),
((2, 3, 4), (4, 3)),
((2, 3, 4), 4),
((3, 4), (2, 4, 3)),
(4, (2, 4, 3))]
# We have to use almost_equal here because the result of numpy's dot
# does not always agree to the last bit with a naive implementation.
# (This is probably due to their usage of SSE or parallelization.)
#
# On my machine in summer 2012 with Python 2.7 and 3.2 the program
#
# import numpy as np
# a = np.array([13.2, 14.3, 15.4, 16.5])
# b = np.array([-5.0, -3.9, -2.8, -1.7])
# r = np.dot(a, b)
# rr = sum(x * y for x, y in zip(a, b))
# print(r - rr)
#
# outputs 2.84217094304e-14.
for sa, sb in shape_pairs:
a = make(sa, dtype)
b = make(sb, dtype) - 5
dta = ta.dot(ta.array(a), ta.array(b))
dnp = np.dot(a, b)
# This circumvents a build error on Numpy 1.12.0, where numpy's
# iscomplexobj does not return True for complex tinyarrays.
# In this case we do the test per element.
if np.__version__ != '1.12.0':
assert_almost_equal(dta, dnp, 13)
elif (getattr(dta, "dtype", None) is complex and
getattr(dta, "shape", None) is not None and
len(dta) > 0):
idx = it.product(*[range(i) for i in dta.shape])
for i in idx:
assert_almost_equal(dta[i], dnp[i], 13)
else:
assert_almost_equal(dta, dnp, 13)
shape_pairs = [((), 2), (2, ()),
(1, 2),
(1, (2, 2)), ((1, 1), 2),
((2, 2), (3, 2)),
((2, 3, 2), (4, 3)),
((2, 3, 4), 3),
((3, 3), (2, 4, 3)),
(3, (2, 4, 3))]
for sa, sb in shape_pairs:
a = make(sa, dtype)
b = make(sb, dtype) - 5
raises(ValueError, ta.dot, ta.array(a.tolist()),
ta.array(b.tolist()))
raises(ValueError, ta.dot, ta.array(a), ta.array(b))
def test_iteration():
for dtype in dtypes:
raises(TypeError, tuple, ta.array(1, dtype))
for shape in [0, 1, 2, 3, (1, 0), (2, 2), (17, 17),
(1, 1, 1), (2, 2, 1), (2, 0, 3)]:
a = make(shape, dtype)
assert tuple(ta.array(a)) == tuple(a)
def test_as_dict_key():
n = 100
d = {}
for dtype in dtypes + dtypes:
for i in range(n):
d[ta.array(range(i), dtype)] = i
assert len(d) == n
for i in range(n):
assert d[tuple(range(i))] == i
def test_hash_equality():
random.seed(123)
# These refer to the width of integers stored in a tinyarray.ndarray_int.
int_bits = (8 * ta.dtype_size[int]) - 1 # 8 bits per byte, minus 1 sign bit
maxint = 2**(int_bits)
special = [float('inf'), float('-inf'),
0, -1, -1.0, -1 + 0j,
303, -312424, -0.3, 1.7, 0.4j, -12.3j, 1 - 12.3j, 1.3 - 12.3j,
(), (-1,), (2,),
(0, 0), (-1, -1), (-5, 7), (3, -1, 0),
((0, 1), (2, 3)), (((-1,),),)]
powers = [sign * (2**e + a) for sign in [1, -1] for a in [-1, 0, 1]
for e in range(int_bits)]
powers.extend([2**int_bits - 1, -2**int_bits, -2**int_bits + 1])
small_random_ints = (random.randrange(-2**16, 2**16) for i in range(1000))
large_random_ints = (random.randrange(-maxint, maxint) for i in range(1000))
small_random_floats = (random.gauss(0, 1) for i in range(1000))
large_random_floats = (random.gauss(0, 1e100) for i in range(1000))
for collection in [special, powers,
small_random_ints, large_random_ints,
small_random_floats, large_random_floats]:
for thing in collection:
arr = ta.array(thing)
if thing == thing:
assert arr == thing
assert not (arr != thing)
assert hash(arr) == hash(thing), repr(thing)
def test_broadcasting():
for sa in [(), 1, (1, 1, 1, 1), 2, (3, 2), (4, 3, 2), (5, 4, 3, 2)]:
for sb in [(), 1, (1, 1), (4, 1, 1), 2, (1, 2), (3, 1), (1, 3, 2)]:
a = make(sa, int)
b = make(sb, int)
assert ta.array(a.tolist()) + ta.array(b.tolist()) == a + b
assert ta.array(a) + ta.array(b) == a + b
def test_promotion():
for dtypea in dtypes:
for dtypeb in dtypes:
a = make(3, dtypea)
b = make(3, dtypeb)
assert ta.array(a.tolist()) + ta.array(b.tolist()) == a + b
assert ta.array(a) + ta.array(b) == a + b
def test_binary_operators():
ops = operator
operations = [ops.add, ops.sub, ops.mul, ops.mod, ops.floordiv, ops.truediv]
if sys.version_info.major < 3:
operations.append(ops.div)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=RuntimeWarning)
for op in operations:
for dtype in dtypes:
for shape in [(), 1, 3, (3, 2)]:
if dtype is complex and op in [ops.mod, ops.floordiv]:
continue
a = make(shape, dtype)
b = make(shape, dtype)
assert_equal(op(ta.array(a.tolist()), ta.array(b.tolist())),
op(a, b))
assert_equal(op(ta.array(a), ta.array(b)), op(a, b))
def test_binary_ufuncs():
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=RuntimeWarning)
for name in ["add", "subtract", "multiply", "divide",
"remainder", "floor_divide"]:
np_func = np.__dict__[name]
ta_func = ta.__dict__[name]
for dtype in dtypes:
for shape in [(), 1, 3, (3, 2)]:
if dtype is complex and \
name in ["remainder", "floor_divide"]:
continue
a = make(shape, dtype)
b = make(shape, dtype)
assert_equal(ta_func(a.tolist(), b.tolist()),
np_func(a, b))
assert_equal(ta_func(a, b), np_func(a, b))
def test_unary_operators():
ops = operator
for op in [ops.neg, ops.pos, ops.abs]:
for dtype in dtypes:
for shape in [(), 1, 3, (3, 2)]:
a = make(shape, dtype)
assert op(ta.array(a.tolist())) == op(a)
assert op(ta.array(a)) == op(a)
def test_unary_ufuncs():
for name in ["negative", "abs", "absolute", "round", "floor", "ceil",
"conjugate"]:
np_func = np.__dict__[name]
ta_func = ta.__dict__[name]
for dtype in dtypes:
for shape in [(), 1, 3, (3, 2)]:
a = make(shape, dtype)
if dtype is complex and name in ["round", "floor", "ceil"]:
raises(TypeError, ta_func, a.tolist())
else:
assert ta_func(a.tolist()) == np_func(a)
for x in [-987654322.5, -987654321.5, -4.51, -3.51, -2.5, -2.0,
-1.7, -1.5, -0.5, -0.3, -0.0, 0.0, 0.3, 0.5, 1.5, 1.7,
2.0, 2.5, 3.51, 4.51, 987654321.5, 987654322.5]:
if x == -0.5 and name == "round":
# Work around an inconsistency in NumPy: on Unix, np.round(-0.5)
# is -0.0, and on Windows it is 0.0, while np.ceil(-0.5) is -0.0
# always.
assert ta.round(-0.5) == -0.0
else:
assert ta_func(x) == np_func(x)
def test_other_scalar_types():
types = [np.int16, np.int32, np.int64,
np.float16, np.float32, np.float64]
for t in types:
a = t(123.456)
assert_equal(ta.array(a), np.array(a))
assert_equal(ta.matrix(a), np.matrix(a))
def test_sizeof():
obj = object()
word_size = machine_wordsize()
for shape in some_shapes:
for dtype in dtypes:
a = ta.zeros(shape, dtype)
sizeof = a.__sizeof__()
# basic buffer size
n_elements = a.size
# if the array is > 1D then the shape is stored
# at the start of the buffer
if len(a.shape) > 1:
n_elements += (a.ndim * machine_wordsize() +
ta.dtype_size[dtype] - 1) // ta.dtype_size[dtype]
buffer_size = n_elements * ta.dtype_size[dtype]
# A Basic Python object has 3 pointer-sized members, or 5 if in
# debug mode.
debug = hasattr(sys, "gettotalrefcount")
sizeof_should_be = (buffer_size
+ machine_wordsize() * (5 if debug else 3))
assert sizeof == sizeof_should_be
def test_comparison():
ops = operator
for op in [ops.ge, ops.gt, ops.le, ops.lt, ops.eq, ops.ne]:
for dtype in (int, float, complex):
for left, right in it.product((np.zeros, np.ones), repeat=2):
for shape in [(), (1,), (2,), (2, 2), (2, 2, 2), (2, 3)]:
a = left(shape, dtype)
b = right(shape, dtype)
if dtype is complex and op not in [ops.eq, ops.ne]:
# unorderable types
raises(TypeError, op, ta.array(a), ta.array(b))
else:
# passing the same object
same = ta.array(a)
assert op(same, same) == op(a.tolist(), a.tolist())
# passing different objects, but equal
assert (op(ta.array(a), ta.array(a)) ==
op(a.tolist(), a.tolist()))
# passing different objects, not equal
assert (op(ta.array(a), ta.array(b)) ==
op(a.tolist(), b.tolist()))
# test different ndims and different shapes
for shp1, shp2 in [((2,), (2, 2)), ((2, 2), (2, 3))]:
a = left(shp1, dtype)
b = right(shp2, dtype)
if op not in (ops.eq, ops.ne):
# unorderable types
raises(TypeError, op, ta.array(a), ta.array(b))
def test_pickle():
import pickle
for dtype in dtypes:
for shape in some_shapes:
a = ta.array(make(shape, dtype))
assert pickle.loads(pickle.dumps(a)) == a
|