File: usage.rst

package info (click to toggle)
tinydb 4.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 536 kB
  • sloc: python: 2,124; makefile: 149
file content (677 lines) | stat: -rw-r--r-- 26,577 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
:tocdepth: 3

.. toctree::
   :maxdepth: 2

Advanced Usage
==============

Remarks on Storage
------------------

Before we dive deeper into the usage of TinyDB, we should stop for a moment
and discuss how TinyDB stores data.

To convert your data to a format that is writable to disk TinyDB uses the
`Python JSON <http://docs.python.org/2/library/json.html>`_ module by default.
It's great when only simple data types are involved but it cannot handle more
complex data types like custom classes. On Python 2 it also converts strings to
Unicode strings upon reading
(described `here <http://stackoverflow.com/q/956867/997063>`_).

If that causes problems, you can write
:doc:`your own storage <extend>`, that uses a more powerful (but also slower)
library like `pickle <http://docs.python.org/library/pickle.html>`_ or
`PyYAML <http://pyyaml.org/>`_.

.. hint:: Opening multiple TinyDB instances on the same data (e.g. with the
   ``JSONStorage``) may result in unexpected behavior due to query caching.
   See query_caching_ on how to disable the query cache.

Queries
-------

With that out of the way, let's start with TinyDB's rich set of queries.
There are two main ways to construct queries. The first one resembles the
syntax of popular ORM tools:

>>> from tinydb import Query
>>> User = Query()
>>> db.search(User.name == 'John')

As you can see, we first create a new Query object and then use it to specify
which fields to check. Searching for nested fields is just as easy:

>>> db.search(User.birthday.year == 1990)

Not all fields can be accessed this way if the field name is not a valid Python
identifier. In this case, you can switch to dict access notation:

>>> # This would be invalid Python syntax:
>>> db.search(User.country-code == 'foo')
>>> # Use this instead:
>>> db.search(User['country-code'] == 'foo')

In addition, you can use arbitrary transform function where a field would be,
for example:

>>> from unidecode import unidecode
>>> db.search(User.name.map(unidecode) == 'Jose')
>>> # will match 'José' etc.

The second, traditional way of constructing queries is as follows:

>>> from tinydb import where
>>> db.search(where('field') == 'value')

Using ``where('field')`` is a shorthand for the following code:

>>> db.search(Query()['field'] == 'value')

Accessing nested fields with this syntax can be achieved like this:

>>> db.search(where('birthday').year == 1900)
>>> db.search(where('birthday')['year'] == 1900)

Advanced queries
................

In the :doc:`getting-started` you've learned about the basic comparisons
(``==``, ``<``, ``>``, ...). In addition to these TinyDB supports the following
queries:

>>> # Existence of a field:
>>> db.search(User.name.exists())

>>> # Regex:
>>> # Full item has to match the regex:
>>> db.search(User.name.matches('[aZ]*'))
>>> # Case insensitive search for 'John':
>>> import re
>>> db.search(User.name.matches('John', flags=re.IGNORECASE))
>>> # Any part of the item has to match the regex:
>>> db.search(User.name.search('b+'))

>>> # Custom test:
>>> test_func = lambda s: s == 'John'
>>> db.search(User.name.test(test_func))

>>> # Custom test with parameters:
>>> def test_func(val, m, n):
>>>     return m <= val <= n
>>> db.search(User.age.test(test_func, 0, 21))
>>> db.search(User.age.test(test_func, 21, 99))

Another case is if you have a ``dict`` where you want to find all documents
that match this ``dict``. We call this searching for a fragment:

>>> db.search(Query().fragment({'foo': True, 'bar': False}))
[{'foo': True, 'bar': False, 'foobar: 'yes!'}]

You also can search for documents where a specific field matches the fragment:

>>> db.search(Query().field.fragment({'foo': True, 'bar': False}))
[{'field': {'foo': True, 'bar': False, 'foobar: 'yes!'}]

When a field contains a list, you also can use the ``any`` and ``all`` methods.
There are two ways to use them: with lists of values and with nested queries.
Let's start with the first one. Assuming we have a user object with a groups list
like this:

>>> db.insert({'name': 'user1', 'groups': ['user']})
>>> db.insert({'name': 'user2', 'groups': ['admin', 'user']})
>>> db.insert({'name': 'user3', 'groups': ['sudo', 'user']})

Now we can use the following queries:

>>> # User's groups include at least one value from ['admin', 'sudo']
>>> db.search(User.groups.any(['admin', 'sudo']))
[{'name': 'user2', 'groups': ['admin', 'user']},
 {'name': 'user3', 'groups': ['sudo', 'user']}]
>>>
>>> # User's groups include all values from ['admin', 'user']
>>> db.search(User.groups.all(['admin', 'user']))
[{'name': 'user2', 'groups': ['admin', 'user']}]

In some cases you may want to have more complex ``any``/``all`` queries.
This is where nested queries come in as helpful. Let's set up a table like this:

>>> Group = Query()
>>> Permission = Query()
>>> groups = db.table('groups')
>>> groups.insert({
        'name': 'user',
        'permissions': [{'type': 'read'}]})
>>> groups.insert({
        'name': 'sudo',
        'permissions': [{'type': 'read'}, {'type': 'sudo'}]})
>>> groups.insert({
        'name': 'admin',
        'permissions': [{'type': 'read'}, {'type': 'write'}, {'type': 'sudo'}]})

Now let's search this table using nested ``any``/``all`` queries:

>>> # Group has a permission with type 'read'
>>> groups.search(Group.permissions.any(Permission.type == 'read'))
[{'name': 'user', 'permissions': [{'type': 'read'}]},
 {'name': 'sudo', 'permissions': [{'type': 'read'}, {'type': 'sudo'}]},
 {'name': 'admin', 'permissions':
        [{'type': 'read'}, {'type': 'write'}, {'type': 'sudo'}]}]
>>> # Group has ONLY permission 'read'
>>> groups.search(Group.permissions.all(Permission.type == 'read'))
[{'name': 'user', 'permissions': [{'type': 'read'}]}]


As you can see, ``any`` tests if there is *at least one* document matching
the query while ``all`` ensures *all* documents match the query.

The opposite operation, checking if a single item is contained in a list,
is also possible using ``one_of``:

>>> db.search(User.name.one_of(['jane', 'john']))

Query modifiers
...............

TinyDB also allows you to use logical operations to modify and combine
queries:

>>> # Negate a query:
>>> db.search(~ (User.name == 'John'))

>>> # Logical AND:
>>> db.search((User.name == 'John') & (User.age <= 30))

>>> # Logical OR:
>>> db.search((User.name == 'John') | (User.name == 'Bob'))

.. note::

    When using ``&`` or ``|``, make sure you wrap the conditions on both sides
    with parentheses or Python will mess up the comparison.

    Also, when using negation (``~``) you'll have to wrap the query you want
    to negate in parentheses.

    The reason for these requirements is that Python's binary operators that are
    used for query modifiers have a higher operator precedence than comparison
    operators. Simply put, ``~ User.name == 'John'`` is parsed by Python as
    ``(~User.name) == 'John'`` instead of ``~(User.name == 'John')``. See also the
    Python `docs on operator precedence
    <https://docs.python.org/3/reference/expressions.html#operator-precedence>`_
    for details.

    You can compose queries dynamically by using the no-op query ``Query().noop()``.

Recap
.....

Let's review the query operations we've learned:

+-------------------------------------+---------------------------------------------------------------------+
| **Queries**                                                                                               |
+-------------------------------------+---------------------------------------------------------------------+
| ``Query().field.exists()``          | Match any document where a field called ``field`` exists            |
+-------------------------------------+---------------------------------------------------------------------+
| ``Query().field.matches(regex)``    | Match any document with the whole field matching the                |
|                                     | regular expression                                                  |
+-------------------------------------+---------------------------------------------------------------------+
| ``Query().field.search(regex)``     | Match any document with a substring of the field matching           |
|                                     | the regular expression                                              |
+-------------------------------------+---------------------------------------------------------------------+
| ``Query().field.test(func, *args)`` | Matches any document for which the function returns                 |
|                                     | ``True``                                                            |
+-------------------------------------+---------------------------------------------------------------------+
| ``Query().field.all(query | list)`` | If given a query, matches all documents where all documents         |
|                                     | in the list ``field`` match the query.                              |
|                                     | If given a list, matches all documents where all documents          |
|                                     | in the list ``field`` are a member of the given list                |
+-------------------------------------+---------------------------------------------------------------------+
| ``Query().field.any(query | list)`` | If given a query, matches all documents where at least one          |
|                                     | document in the list ``field`` match the query.                     |
|                                     | If given a list, matches all documents where at least one           |
|                                     | documents in the list ``field`` are a member of the given           |
|                                     | list                                                                |
+-------------------------------------+---------------------------------------------------------------------+
| ``Query().field.one_of(list)``      | Match if the field is contained in the list                         |
+-------------------------------------+---------------------------------------------------------------------+
| **Logical operations on queries**                                                                         |
+-------------------------------------+---------------------------------------------------------------------+
| ``~ (query)``                       | Match documents that don't match the query (logical NOT)            |
+-------------------------------------+---------------------------------------------------------------------+
| ``(query1) & (query2)``             | Match documents that match both queries (logical AND)               |
+-------------------------------------+---------------------------------------------------------------------+
| ``(query1) | (query2)``             | Match documents that match at least one of the queries (logical OR) |
+-------------------------------------+---------------------------------------------------------------------+

Handling Data
-------------

Next, let's look at some more ways to insert, update and retrieve data from
your database.

Inserting data
..............

As already described you can insert a document using ``db.insert(...)``.
In case you want to insert multiple documents, you can use ``db.insert_multiple(...)``:

>>> db.insert_multiple([
        {'name': 'John', 'age': 22},
        {'name': 'John', 'age': 37}])
>>> db.insert_multiple({'int': 1, 'value': i} for i in range(2))

Also in some cases it may be useful to specify the document ID yourself when
inserting data. You can do that by using the :class:`~tinydb.table.Document`
class:

>>> db.insert(Document({'name': 'John', 'age': 22}, doc_id=12))
12

The same is possible when using ``db.insert_multiple(...)``:

>>> db.insert_multiple([
    Document({'name': 'John', 'age': 22}, doc_id=12),
    Document({'name': 'Jane', 'age': 24}, doc_id=14),
])
[12, 14]

.. note::
    Inserting a ``Document`` with an ID that already exists will result
    in a ``ValueError`` being raised.

Updating data
.............

Sometimes you want to update all documents in your database. In this case, you
can leave out the ``query`` argument:

>>> db.update({'foo': 'bar'})

When passing a dict to ``db.update(fields, query)``, it only allows you to
update a document by adding or overwriting its values. But sometimes you may
need to e.g. remove one field or increment its value. In that case you can
pass a function instead of ``fields``:

>>> from tinydb.operations import delete
>>> db.update(delete('key1'), User.name == 'John')

This will remove the key ``key1`` from all matching documents. TinyDB comes
with these operations:

- ``delete(key)``: delete a key from the document
- ``increment(key)``: increment the value of a key
- ``decrement(key)``: decrement the value of a key
- ``add(key, value)``: add ``value`` to the value of a key (also works for strings)
- ``subtract(key, value)``: subtract ``value`` from the value of a key
- ``set(key, value)``: set ``key`` to ``value``

Of course you also can write your own operations:

>>> def your_operation(your_arguments):
...     def transform(doc):
...         # do something with the document
...         # ...
...     return transform
...
>>> db.update(your_operation(arguments), query)

In order to perform multiple update operations at once, you can use the
``update_multiple`` method like this:

>>> db.update_multiple([
...     ({'int': 2}, where('char') == 'a'),
...     ({'int': 4}, where('char') == 'b'),
... ])

You also can mix normal updates with update operations:

>>> db.update_multiple([
...     ({'int': 2}, where('char') == 'a'),
...     ({delete('int'), where('char') == 'b'),
... ])

Data access and modification
----------------------------

Upserting data
..............

In some cases you'll need a mix of both ``update`` and ``insert``: ``upsert``.
This operation is provided a document and a query. If it finds any documents
matching the query, they will be updated with the data from the provided document.
On the other hand, if no matching document is found, it inserts the provided
document into the table:

>>> db.upsert({'name': 'John', 'logged-in': True}, User.name == 'John')

This will update all users with the name John to have ``logged-in`` set to ``True``.
If no matching user is found, a new document is inserted with both the name set
and the ``logged-in`` flag.

To use the ID of the document as matching criterion a :class:`~tinydb.table.Document`
with ``doc_id`` is passed instead of a query:

>>> db.upsert(Document({'name': 'John', 'logged-in': True}, doc_id=12))

Retrieving data
...............

There are several ways to retrieve data from your database. For instance you
can get the number of stored documents:

>>> len(db)
3

.. hint::
    This will return the number of documents in the default table
    (see the notes on the :ref:`default table <default_table>`).

Then of course you can use ``db.search(...)`` as described in the :doc:`getting-started`
section. But sometimes you want to get only one matching document. Instead of using

>>> try:
...     result = db.search(User.name == 'John')[0]
... except IndexError:
...     pass


you can use ``db.get(...)``:

>>> db.get(User.name == 'John')
{'name': 'John', 'age': 22}
>>> db.get(User.name == 'Bobby')
None

.. caution::

    If multiple documents match the query, probably a random one of them will
    be returned!

Often you don't want to search for documents but only know whether they are
stored in the database. In this case ``db.contains(...)`` is your friend:

>>> db.contains(User.name == 'John')

In a similar manner you can look up the number of documents matching a query:

>>> db.count(User.name == 'John')
2

Recap
^^^^^

Let's summarize the ways to handle data:

+-------------------------------+---------------------------------------------------------------+
| **Inserting data**                                                                            |
+-------------------------------+---------------------------------------------------------------+
| ``db.insert_multiple(...)``   | Insert multiple documents                                     |
+-------------------------------+---------------------------------------------------------------+
| **Updating data**                                                                             |
+-------------------------------+---------------------------------------------------------------+
| ``db.update(operation, ...)`` | Update all matching documents with a special operation        |
+-------------------------------+---------------------------------------------------------------+
| **Retrieving data**                                                                           |
+-------------------------------+---------------------------------------------------------------+
| ``len(db)``                   | Get the number of documents in the database                   |
+-------------------------------+---------------------------------------------------------------+
| ``db.get(query)``             | Get one document matching the query                           |
+-------------------------------+---------------------------------------------------------------+
| ``db.contains(query)``        | Check if the database contains a matching document            |
+-------------------------------+---------------------------------------------------------------+
| ``db.count(query)``           | Get the number of matching documents                          |
+-------------------------------+---------------------------------------------------------------+


.. note::

    This was a new feature in v3.6.0

.. _document_ids:

Using Document IDs
------------------

Internally TinyDB associates an ID with every document you insert. It's returned
after inserting a document:

>>> db.insert({'name': 'John', 'age': 22})
3
>>> db.insert_multiple([{...}, {...}, {...}])
[4, 5, 6]

In addition you can get the ID of already inserted documents using
``document.doc_id``. This works both with ``get`` and ``all``:

>>> el = db.get(User.name == 'John')
>>> el.doc_id
3
>>> el = db.all()[0]
>>> el.doc_id
1
>>> el = db.all()[-1]
>>> el.doc_id
12

Different TinyDB methods also work with IDs, namely: ``update``, ``remove``,
``contains`` and ``get``. The first two also return a list of affected IDs.

>>> db.update({'value': 2}, doc_ids=[1, 2])
>>> db.contains(doc_id=1)
True
>>> db.remove(doc_ids=[1, 2])
>>> db.get(doc_id=3)
{...}
>>> db.get(doc_ids=[1, 2])
[{...}, {...}]

Using ``doc_id``/``doc_ids`` instead of ``Query()`` again is slightly faster
in operation.

Recap
.....

Let's sum up the way TinyDB supports working with IDs:

+-------------------------------------+------------------------------------------------------------+
| **Getting a document's ID**                                                                      |
+-------------------------------------+------------------------------------------------------------+
| ``db.insert(...)``                  | Returns the inserted document's ID                         |
+-------------------------------------+------------------------------------------------------------+
| ``db.insert_multiple(...)``         | Returns the inserted documents' ID                         |
+-------------------------------------+------------------------------------------------------------+
| ``document.doc_id``                 | Get the ID of a document fetched from the db               |
+-------------------------------------+------------------------------------------------------------+
| **Working with IDs**                                                                             |
+-------------------------------------+------------------------------------------------------------+
| ``db.get(doc_id=...)``              | Get the document with the given ID                         |
+-------------------------------------+------------------------------------------------------------+
| ``db.contains(doc_id=...)``         | Check if the db contains a document with the given         |
|                                     | IDs                                                        |
+-------------------------------------+------------------------------------------------------------+
| ``db.update({...}, doc_ids=[...])`` | Update all documents with the given IDs                    |
+-------------------------------------+------------------------------------------------------------+
| ``db.remove(doc_ids=[...])``        | Remove all documents with the given IDs                    |
+-------------------------------------+------------------------------------------------------------+


Tables
------

TinyDB supports working with multiple tables. They behave just the same as
the ``TinyDB`` class. To create and use a table, use ``db.table(name)``.

>>> table = db.table('table_name')
>>> table.insert({'value': True})
>>> table.all()
[{'value': True}]
>>> for row in table:
>>>     print(row)
{'value': True}

To remove a table from a database, use:

>>> db.drop_table('table_name')

If on the other hand you want to remove all tables, use the counterpart:

>>> db.drop_tables()

Finally, you can get a list with the names of all tables in your database:

>>> db.tables()
{'_default', 'table_name'}

.. _default_table:

Default Table
.............

TinyDB uses a table named ``_default`` as the default table. All operations
on the database object (like ``db.insert(...)``) operate on this table.
The name of this table can be modified by setting the ``default_table_name``
class variable to modify the default table name for all instances:

>>> #1: for a single instance only
>>> db = TinyDB(storage=SomeStorage)
>>> db.default_table_name = 'my-default'
>>> #2: for all instances
>>> TinyDB.default_table_name = 'my-default'

.. _query_caching:

Query Caching
.............

TinyDB caches query result for performance. That way re-running a query won't
have to read the data from the storage as long as the database hasn't been
modified. You can optimize the query cache size by passing the ``cache_size``
to the ``table(...)`` function:

>>> table = db.table('table_name', cache_size=30)

.. hint:: You can set ``cache_size`` to ``None`` to make the cache unlimited in
   size. Also, you can set ``cache_size`` to 0 to disable it.

.. hint:: It's not possible to open the same table multiple times with different
   settings. After the first invocation, all the subsequent calls will return
   the same table with the same settings as the first one.

.. hint:: The TinyDB query cache doesn't check if the underlying storage
   that the database uses has been modified by an external process. In this
   case the query cache may return outdated results. To clear the cache and
   read data from the storage again you can use ``db.clear_cache()``.

.. hint:: When using an unlimited cache size and ``test()`` queries, TinyDB
   will store a reference to the test function. As a result of that behavior
   long-running applications that use ``lambda`` functions as a test function
   may experience memory leaks.

Storage & Middleware
--------------------

Storage Types
.............

TinyDB comes with two storage types: JSON and in-memory. By
default TinyDB stores its data in JSON files so you have to specify the path
where to store it:

>>> from tinydb import TinyDB, where
>>> db = TinyDB('path/to/db.json')

To use the in-memory storage, use:

>>> from tinydb.storages import MemoryStorage
>>> db = TinyDB(storage=MemoryStorage)

.. hint::
    All arguments except for the ``storage`` argument are forwarded to the
    underlying storage. For the JSON storage you can use this to pass
    additional keyword arguments to Python's
    `json.dump(...) <https://docs.python.org/2/library/json.html#json.dump>`_
    method. For example, you can set it to create prettified JSON files like
    this:

    >>> db = TinyDB('db.json', sort_keys=True, indent=4, separators=(',', ': '))

To modify the default storage for all ``TinyDB`` instances, set the
``default_storage_class`` class variable:

>>> TinyDB.default_storage_class = MemoryStorage

In case you need to access the storage instance directly, you can use the
``storage`` property of your TinyDB instance. This may be useful to call
method directly on the storage or middleware:

>>> db = TinyDB(storage=CachingMiddleware(MemoryStorage))
<tinydb.middlewares.CachingMiddleware at 0x10991def0>
>>> db.storage.flush()

Middleware
..........

Middleware wraps around existing storage allowing you to customize their
behaviour.

>>> from tinydb.storages import JSONStorage
>>> from tinydb.middlewares import CachingMiddleware
>>> db = TinyDB('/path/to/db.json', storage=CachingMiddleware(JSONStorage))

.. hint::
    You can nest middleware:

    >>> db = TinyDB('/path/to/db.json',
                    storage=FirstMiddleware(SecondMiddleware(JSONStorage)))

CachingMiddleware
^^^^^^^^^^^^^^^^^

The ``CachingMiddleware`` improves speed by reducing disk I/O. It caches all
read operations and writes data to disk after a configured number of
write operations.

To make sure that all data is safely written when closing the table, use one
of these ways:

.. code-block:: python

    # Using a context manager:
    with database as db:
        # Your operations

.. code-block:: python

    # Using the close function
    db.close()

.. _mypy_type_checking:

MyPy Type Checking
------------------

TinyDB comes with type annotations that MyPy can use to make sure you're using
the API correctly. Unfortunately, MyPy doesn't understand all code patterns
that TinyDB uses. For that reason TinyDB ships a MyPy plugin that helps
correctly type checking code that uses TinyDB. To use it, add it to the
plugins list in the `MyPy configuration file
<https://mypy.readthedocs.io/en/latest/config_file.html>`_
(typically located in ``setup.cfg`` or ``mypy.ini``):

.. code-block:: ini

    [mypy]
    plugins = tinydb.mypy_plugin

What's next
-----------

Congratulations, you've made through the user guide! Now go and build something
awesome or dive deeper into TinyDB with these resources:

- Want to learn how to customize TinyDB (storages, middlewares) and what
  extensions exist? Check out :doc:`extend` and :doc:`extensions`.
- Want to study the API in detail? Read :doc:`api`.
- Interested in contributing to the TinyDB development guide? Go on to the
  :doc:`contribute`.