1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
/**
* Standard Benchmark Database file
* ------------------------------------------------------------------------
* This is a no-modify file, keep it untouched.
*/
/* Throughput problems
* ----------------------
*
* In these problems, edges are present with continous message sending policies
* meaning that motes try to send messages as fast as they can.
* Such edges next to each other influence each other's behaviour.
*
* All of these benchmarks can be run with 4 motes (not all requires 4).
*/
#ifndef EXCLUDE_STANDARD_THROUGHPUT
/** One-edge throughput **/
_BMARK_START_(10)
{ 1, 2, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** Two-edge throughput **/
_BMARK_START_(11)
{ 1, 2, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID },
{ 2, 1, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** Three-edge, circle-style throughput **/
_BMARK_START_(12)
{ 1, 2, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID },
{ 2, 3, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID },
{ 3, 1, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** One broadcast flooding mote **/
_BMARK_START_(13)
{ 4, ALL, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** Two broadcast flooding motes **/
_BMARK_START_(14)
{ 4, ALL, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID },
{ 3, ALL, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** Three broadcast flooding motes **/
_BMARK_START_(15)
{ 4, ALL, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID },
{ 3, ALL, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID },
{ 2, ALL, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** Two parallel throughput links **/
_BMARK_START_(16)
{ 1, 2, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID },
{ 3, 4, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** Two parallel throughput links, one with ACK request**/
_BMARK_START_(17)
{ 1, 2, NO_TIMER , { SEND_ON_INIT, 0, NEED_ACK, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID },
{ 3, 4, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** One throughput link next to one broadcast flooding mote **/
_BMARK_START_(18)
{ 1, 2, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID },
{ 3, ALL, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** Hidden terminal problem (2 motes flooding the same mote) **/
_BMARK_START_(19)
{ 1, 2, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID },
{ 3, 2, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** Hidden terminal problem (3 motes flooding the same mote) **/
_BMARK_START_(20)
{ 1, 4, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID },
{ 2, 4, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID },
{ 3, 4, NO_TIMER , { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID }
_BMARK_END_
#endif // EXCLUDE_STANDARD_THROUGHPUT
/* Collision problems
* ----------------------
*
* In these problems, communication is based on timers. Since all 4 timers that
* are supported can be highly customized, different timer configurations could
* result different scenarios.
* If the sending windows match, collision occur, thus the name of these benchmarks.
*
* All of these benchmarks can be run with 4 motes.
*/
#ifndef EXCLUDE_STANDARD_COLLISION
/** Two parallel timer-based links **/
_BMARK_START_(30)
{ 1, 2, {TIMER(1), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 3, 4, {TIMER(2), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** Two parallel timer-based links, broadcasting **/
_BMARK_START_(31)
{ 4, ALL, {TIMER(1), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 3, ALL, {TIMER(2), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** Three parallel timer-based links, broadcasting **/
_BMARK_START_(32)
{ 4, ALL, {TIMER(1), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 3, ALL, {TIMER(2), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 2, ALL, {TIMER(3), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** Three parallel timer-based links, direct links **/
_BMARK_START_(33)
{ 1, 2, {TIMER(1), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 2, 3, {TIMER(2), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 3, 4, {TIMER(3), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** Three timer-based links having a common destination **/
_BMARK_START_(34)
{ 1, 4, {TIMER(1), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 2, 4, {TIMER(2), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 3, 4, {TIMER(3), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** One timer-based link influenced by a parallel flooding link **/
_BMARK_START_(35)
{ 1, 2, {TIMER(1), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 3, 4, NO_TIMER, { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** One timer-based link influenced by a parallel flooding link (broadcast) **/
_BMARK_START_(36)
{ 1, 2, {TIMER(1), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 4, ALL, NO_TIMER, { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID }
_BMARK_END_
#endif // EXCLUDE_STANDARD_COLLISION
/* Forwarding problems
* ----------------------
*
* In these problems, communication initiation is based on timers. Additionally, networks
* are created such a way that messages are to be forwarded, so if any mote hears a message,
* it should forward it on at least one link.
*
* All of these benchmarks can be run with 6 motes (not all requires 6).
*/
#ifndef EXCLUDE_STANDARD_FORWARDING
/** M2 forwards to M1 what it hears from M1 **/
_BMARK_START_(50)
{ 1, 2, {TIMER(1), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), REPLY_ON(1), START_MSG_ID },
{ 2, 1, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** M2 forwards to M1 what it hears from M1.
Also, a flooding broadcast disturbance edge is present. **/
_BMARK_START_(51)
{ 1, 2, {TIMER(1), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), REPLY_ON(1), START_MSG_ID },
{ 2, 1, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 4, ALL, NO_TIMER, { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** A message chain with 4 motes. M1 initiates, M2,M3 forwards to a sink mote, M4. **/
_BMARK_START_(52)
{ 1, 2, {TIMER(1), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), REPLY_ON(1), START_MSG_ID },
{ 2, 3, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), REPLY_ON(2), START_MSG_ID },
{ 3, 4, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** A message chain with 6 motes. M1 initiates, M2,M3,M4,M5 forwards to a sink mote, M6. **/
_BMARK_START_(53)
{ 1, 2, {TIMER(1), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), REPLY_ON(1), START_MSG_ID },
{ 2, 3, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), REPLY_ON(2), START_MSG_ID },
{ 3, 4, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), REPLY_ON(3), START_MSG_ID },
{ 4, 5, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), REPLY_ON(4), START_MSG_ID },
{ 5, 6, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** Two distinct, parallel forwarding chains: M1->M2->M3 and M4->M5->M6. **/
_BMARK_START_(54)
{ 1, 2, {TIMER(1), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), REPLY_ON(1), START_MSG_ID },
{ 2, 3, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 4, 5, {TIMER(2), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), REPLY_ON(3), START_MSG_ID },
{ 5, 6, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** A "message collector" binary tree:
M1, M2 transmits to M4, M4 forwards these messages to M5.
M3 also transmits to M5.
M5 forwards those messages that are heared either from M4 or M3 to M6.
**/
_BMARK_START_(55)
{ 1, 4, {TIMER(1), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), REPLY_ON(3), START_MSG_ID },
{ 2, 4, {TIMER(2), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), REPLY_ON(3), START_MSG_ID },
{ 3, 5, {TIMER(3), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), REPLY_ON(4), START_MSG_ID },
{ 4, 5, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), REPLY_ON(4), START_MSG_ID },
{ 5, 6, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** A "noisy message collector" binary tree:
M1, M2 transmits to M4, M4 forwards these messages to M5.
M3 also transmits to M5.
M6 acts as a disturbance mote, continously broadcasting.
**/
_BMARK_START_(56)
{ 1, 4, {TIMER(1), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), REPLY_ON(3), START_MSG_ID },
{ 2, 4, {TIMER(2), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), REPLY_ON(3), START_MSG_ID },
{ 3, 5, {TIMER(3), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 4, 5, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 6, ALL, NO_TIMER, { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** A near complete binary tree message collector network.
There are three chains : M1 -> M4 -> M6, M2 -> M5 -> M6, and M3 -> M5 -> M6.
**/
_BMARK_START_(57)
{ 1, 4, {TIMER(1), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), REPLY_ON(3), START_MSG_ID },
{ 2, 5, {TIMER(2), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), REPLY_ON(4), START_MSG_ID },
{ 3, 5, {TIMER(3), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), REPLY_ON(4), START_MSG_ID },
{ 4, 6, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 5, 6, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** A "message disseminator" binary tree:
M6 transmits to M5 which duplicates these messages towards M4 and M3. M3 is a sink, while
M4 also forwards the messages to M1 and M2.
**/
_BMARK_START_(58)
{ 6, 5, {TIMER(1), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), REPLY_ON(1) | REPLY_ON(2), START_MSG_ID },
{ 5, 4, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), REPLY_ON(3) | REPLY_ON(4), START_MSG_ID },
{ 5, 3, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 4, 1, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 4, 2, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** A "noisy message disseminator" binary tree:
M5 sends messages to M4 and M3. M3 is a sink, while M4 forwards the messages to M1 and M2.
M6 acts as a disturbance mote, continously broadcasting.
**/
_BMARK_START_(59)
{ 5, 4, {TIMER(1), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), REPLY_ON(2) | REPLY_ON(3), START_MSG_ID },
{ 5, 3, {TIMER(2), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 4, 1, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 4, 2, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 6, ALL, NO_TIMER, { SEND_ON_INIT, 0, 0, 0, 0 }, NUM(INFINITE), NO_REPLY, START_MSG_ID }
_BMARK_END_
/** A near complete binary tree message dissemination network.
There are three chains : M6 -> M4 -> M1, M6 -> M5 -> M2, and M6 -> M5 -> M3.
**/
_BMARK_START_(60)
{ 6, 4, {TIMER(1), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), REPLY_ON(2), START_MSG_ID },
{ 6, 5, {TIMER(2), 0}, { SEND_ON_TIMER, 0, 0, 0, 0 }, NUM(1), REPLY_ON(3) | REPLY_ON(4), START_MSG_ID },
{ 4, 1, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 5, 2, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID },
{ 5, 3, NO_TIMER, { SEND_ON_REQ, 0, 0, 0, 0 }, NUM(1), NO_REPLY, START_MSG_ID }
_BMARK_END_
#endif // EXCLUDE_STANDARD_FORWARDING
|