1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/*
* Copyright (c) 2010, University of Szeged
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* - Neither the name of University of Szeged nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Author: Krisztian Veress
* veresskrisztian@gmail.com
*/
#define ATOMIC_PERIODIC_TIME 4096
#define _MAX_(a,b) (((a) < (b)) ? (b) : (a))
#define _MIN_(a,b) (((a) > (b)) ? (b) : (a))
module CodeProfileP @safe() {
provides {
interface StdControl;
interface CodeProfile;
}
uses {
interface Alarm<TMicro, uint32_t> as Alarm;
}
}
implementation {
int32_t max_mil; // Maximum Interrupt Length
int32_t max_mal; // Maximum Atomic Length
int32_t max_mtl; // Maximum Task Latency
int32_t min_mil; // Mininum Interrupt Length
int32_t min_mal; // Mininum Atomic Length
int32_t min_mtl; // Mininum Task Latency
uint32_t mtl_offset;
uint32_t mal_offset;
norace bool alive;
command int32_t CodeProfile.getMaxInterruptLength() { return max_mil; }
command int32_t CodeProfile.getMaxAtomicLength() { atomic {return max_mal;} }
command int32_t CodeProfile.getMaxTaskLatency() { return max_mtl; }
command int32_t CodeProfile.getMinInterruptLength() { return min_mil; }
command int32_t CodeProfile.getMinAtomicLength() { atomic {return min_mal;} }
command int32_t CodeProfile.getMinTaskLatency() { return min_mtl; }
task void measureTask() {
uint32_t t1 = call Alarm.getNow();
uint32_t t2 = call Alarm.getNow();
// The difference between two consecutive getNow() call can be
// significantly greater than zero, if interrupt(s) occured in between. That
// difference is proportional to the running time of the
// interrupt handler.
max_mil = _MAX_((int32_t)(t2-t1),max_mil);
min_mil = _MIN_((int32_t)(t2-t1),min_mil);
// The difference between the posting time of this task (mtl_offset)
// and the first expression's execution time ( t1 ) is the time
// between two measureTask tasks.
// This way, interleaving tasks' running time is measured.
max_mtl = _MAX_((int32_t)(t1-mtl_offset),max_mtl);
min_mtl = _MIN_((int32_t)(t1-mtl_offset),min_mtl);
if ( alive ) {
mtl_offset = call Alarm.getNow();
post measureTask();
}
}
command error_t StdControl.start() {
alive = TRUE;
min_mil = min_mtl = 0x7fffffffL;
max_mil = max_mtl = -(0x7fffffffL-1L);
// Atomic Length Measurement Init
atomic {
max_mal = -(0x7fffffffL-1L);
min_mal = 0x7fffffffL;
call Alarm.stop();
mal_offset = call Alarm.getNow();
call Alarm.startAt(mal_offset, ATOMIC_PERIODIC_TIME);
}
mtl_offset = call Alarm.getNow();
post measureTask();
return SUCCESS;
}
command error_t StdControl.stop() {
call Alarm.stop();
alive = FALSE;
return SUCCESS;
}
async event void Alarm.fired() {
// Get the time
int64_t delay = (int64_t)call Alarm.getNow();
atomic {
// When the alarm should have been fired?
// This is also the base of the next fire target.
mal_offset += ATOMIC_PERIODIC_TIME;
// Compute the shift between now and the target
delay -= mal_offset;
max_mal = _MAX_((int32_t)delay,max_mal);
min_mal = _MIN_((int32_t)delay,min_mal);
}
if ( alive )
call Alarm.startAt(mal_offset,ATOMIC_PERIODIC_TIME);
}
}
|