1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
/*
* Copyright (c) 2005-2006 Intel Corporation
* All rights reserved.
*
* This file is distributed under the terms in the attached INTEL-LICENSE
* file. If you do not find these files, copies can be found by writing to
* Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
* 94704. Attention: Intel License Inquiry.
*/
/**
* Generic byte-at-a-time implementation of the AT45DB HPL.
*
* Each platform must provide its own HPL implementation for its AT45DB
* flash chip. To simplify this task, this component can easily be used to
* build an AT45DB HPL by connecting it to a byte-at-a-time SPI interface,
* and an HplAt45dbByte interface.
*
* @param The number of bits needed to represent a sector size, e.g., 9
* for the AT45DB041B.
*
* @author David Gay
*/
generic module HplAt45dbByteC(int sectorSizeLog2) @safe() {
provides interface HplAt45db;
uses {
interface Resource;
interface SpiByte as FlashSpi;
interface HplAt45dbByte;
}
}
implementation
{
enum {
P_IDLE,
P_SEND_CMD,
P_READ,
P_READ_CRC,
P_WRITE,
P_WAIT_IDLE,
P_WAIT_COMPARE,
P_WAIT_COMPARE_OK,
P_FILL,
P_FLUSH,
P_COMPARE,
P_ERASE
};
uint8_t status = P_IDLE;
uint8_t flashCmd[9];
at45pageoffset_t dataCount;
uint8_t * COUNT_NOK(dataCount) data;
uint8_t dontCare;
void complete(uint16_t crc) {
uint8_t s = status;
status = P_IDLE;
switch (s)
{
default: break;
case P_READ_CRC:
signal HplAt45db.crcDone(crc);
break;
case P_FILL:
signal HplAt45db.fillDone();
break;
case P_FLUSH:
signal HplAt45db.flushDone();
break;
case P_COMPARE:
signal HplAt45db.compareDone();
break;
case P_ERASE:
signal HplAt45db.eraseDone();
break;
case P_READ:
signal HplAt45db.readDone();
break;
case P_WRITE:
signal HplAt45db.writeDone();
break;
}
}
void requestFlashStatus() {
call HplAt45dbByte.select();
call FlashSpi.write(AT45_C_REQ_STATUS);
call HplAt45dbByte.waitIdle();
}
void doCommand() {
uint8_t in = 0, out = 0;
uint8_t *ptr;
at45pageoffset_t count;
uint8_t lphase;
uint16_t crc = (uint16_t)data;
if (dataCount) // skip 0-byte ops
{
/* For a 3% speedup, we could use labels and goto *.
But: very gcc-specific. Also, need to do
asm ("ijmp" : : "z" (state))
instead of goto *state
*/
ptr = flashCmd;
lphase = P_SEND_CMD;
count = 4 + dontCare;
call HplAt45dbByte.select();
for (;;)
{
if (lphase == P_READ_CRC)
{
crc = crcByte(crc, in);
--count;
if (!count)
break;
}
else if (lphase == P_SEND_CMD)
{
// Note: the dontCare bytes are read after the end of cmd...
out = *ptr++;
count--;
if (!count)
{
lphase = status;
ptr = data;
count = dataCount;
}
}
else if (lphase == P_READ)
{
*ptr++ = in;
--count;
if (!count)
break;
}
else if (lphase == P_WRITE)
{
if (!count)
break;
out = *ptr++;
--count;
}
else /* P_COMMAND */
break;
in = call FlashSpi.write(out);
}
call HplAt45dbByte.deselect();
}
call Resource.release();
complete(crc);
}
event void Resource.granted() {
switch (status)
{
case P_WAIT_COMPARE: case P_WAIT_IDLE:
requestFlashStatus();
break;
default:
doCommand();
break;
}
}
void execCommand(uint8_t op, uint8_t reqCmd, uint8_t reqDontCare,
at45page_t reqPage, at45pageoffset_t reqOffset,
uint8_t * COUNT_NOK(reqCount) reqData, at45pageoffset_t reqCount) {
status = op;
// page (2 bytes) and highest bit of offset
flashCmd[0] = reqCmd;
flashCmd[1] = reqPage >> (16 - sectorSizeLog2);
flashCmd[2] = reqPage << (sectorSizeLog2 - 8) | reqOffset >> 8;
flashCmd[3] = reqOffset; // low-order 8 bits
data = NULL;
dataCount = reqCount;
data = reqData;
dontCare = reqDontCare;
call Resource.request();
}
command void HplAt45db.waitIdle() {
status = P_WAIT_IDLE;
call Resource.request();
}
command void HplAt45db.waitCompare() {
status = P_WAIT_COMPARE;
call Resource.request();
}
event void HplAt45dbByte.idle() {
if (status == P_WAIT_COMPARE)
{
bool cstatus = call HplAt45dbByte.getCompareStatus();
call HplAt45dbByte.deselect();
call Resource.release();
signal HplAt45db.waitCompareDone(cstatus);
}
else
{
call HplAt45dbByte.deselect();
call Resource.release();
signal HplAt45db.waitIdleDone();
}
}
command void HplAt45db.fill(uint8_t cmd, at45page_t page) {
execCommand(P_FILL, cmd, 0, page, 0, NULL, 1);
}
command void HplAt45db.flush(uint8_t cmd, at45page_t page) {
execCommand(P_FLUSH, cmd, 0, page, 0, NULL, 1);
}
command void HplAt45db.compare(uint8_t cmd, at45page_t page) {
execCommand(P_COMPARE, cmd, 0, page, 0, NULL, 1);
}
command void HplAt45db.erase(uint8_t cmd, at45page_t page) {
execCommand(P_ERASE, cmd, 0, page, 0, NULL, 1);
}
command void HplAt45db.read(uint8_t cmd,
at45page_t page, at45pageoffset_t offset,
uint8_t *pdata, at45pageoffset_t count) {
execCommand(P_READ, cmd, 5, page, offset, pdata, count);
}
command void HplAt45db.readBuffer(uint8_t cmd, at45pageoffset_t offset,
uint8_t *pdata, at45pageoffset_t count) {
execCommand(P_READ, cmd, 2, 0, offset, pdata, count);
}
command void HplAt45db.crc(uint8_t cmd,
at45page_t page, at45pageoffset_t offset,
at45pageoffset_t count,
uint16_t baseCrc) {
execCommand(P_READ_CRC, cmd, 2, page, offset, TCAST(uint8_t * COUNT(count), baseCrc), count);
}
command void HplAt45db.write(uint8_t cmd,
at45page_t page, at45pageoffset_t offset,
uint8_t *pdata, at45pageoffset_t count) {
execCommand(P_WRITE, cmd, 0, page, offset, pdata, count);
}
}
|