1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
/*
* Copyright (c) 2010, University of Szeged
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
* - Neither the name of the copyright holder nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Author: Miklos Maroti
*/
#include "HplAtmRfa1Timer.h"
module HplAtmRfa1Timer1P @safe()
{
provides
{
interface AtmegaCounter<uint16_t> as Timer;
interface AtmegaCompare<uint16_t> as CompareA;
interface AtmegaCompare<uint16_t> as CompareB;
interface AtmegaCompare<uint16_t> as CompareC;
interface AtmegaCapture<uint16_t> as Capture;
interface McuPowerOverride;
}
uses
{
interface McuPowerState;
}
}
implementation
{
// ----- TIMER: timer counter register (TCNT)
async command uint16_t Timer.get()
{
atomic return TCNT1;
}
async command void Timer.set(uint16_t value)
{
atomic TCNT1 = value;
}
// ----- TIMER: timer interrupt flag register (TIFR), timer overflow flag (TOV)
default async event void Timer.overflow() { }
AVR_ATOMIC_HANDLER(TIMER1_OVF_vect) { signal Timer.overflow(); }
async command bool Timer.test() { return TIFR1 & (1 << TOV1); }
async command void Timer.reset() { TIFR1 = 1 << TOV1; }
// ----- TIMER: timer interrupt mask register (TIMSK), timer overflow interrupt enable (TOIE)
async command void Timer.start()
{
SET_BIT(TIMSK1, TOIE1);
}
async command void Timer.stop()
{
CLR_BIT(TIMSK1, TOIE1);
}
async command bool Timer.isOn() { return TIMSK1 & (1 << TOIE1); }
// ----- TIMER: timer control register (TCCR), clock select (CS) and waveform generation mode (WGM) bits
async command void Timer.setMode(uint8_t mode)
{
atomic
{
TCCR1A = (TCCR1A & ~(0x3 << WGM10))
| ((mode >> 3) & 0x3) << WGM10;
TCCR1B = (TCCR1B & ~(0x3 << WGM12 | 0x7 << CS10))
| ((mode >> 5) & 0x3) << WGM12
| ((mode >> 0) & 0x7) << CS10;
}
}
async command uint8_t Timer.getMode()
{
uint8_t a, b;
atomic
{
a = TCCR1A;
b = TCCR1B;
}
return ((a >> WGM10) & 0x3) << 3
| ((b >> WGM12) & 0x3) << 5
| ((b >> CS10) & 0x7) << 0;
}
// ----- COMPARE A: output compare register (OCR)
async command uint16_t CompareA.get()
{
atomic return OCR1A;
}
async command void CompareA.set(uint16_t value)
{
atomic OCR1A = value;
}
// ----- COMPARE B: output compare register (OCR)
async command uint16_t CompareB.get()
{
atomic return OCR1B;
}
async command void CompareB.set(uint16_t value)
{
atomic OCR1B = value;
}
// ----- COMPARE C: output compare register (OCR)
async command uint16_t CompareC.get()
{
atomic return OCR1C;
}
async command void CompareC.set(uint16_t value)
{
atomic OCR1C = value;
}
// ----- COMPARE A: timer interrupt flag register (TIFR), output comare match flag (OCF)
default async event void CompareA.fired() { }
AVR_ATOMIC_HANDLER(TIMER1_COMPA_vect) { signal CompareA.fired(); }
async command bool CompareA.test() { return TIFR1 & (1 << OCF1A); }
async command void CompareA.reset() { TIFR1 = 1 << OCF1A; }
// ----- COMPARE B: timer interrupt flag register (TIFR), output comare match flag (OCF)
default async event void CompareB.fired() { }
AVR_ATOMIC_HANDLER(TIMER1_COMPB_vect) { signal CompareB.fired(); }
async command bool CompareB.test() { return TIFR1 & (1 << OCF1B); }
async command void CompareB.reset() { TIFR1 = 1 << OCF1B; }
// ----- COMPARE C: timer interrupt flag register (TIFR), output comare match flag (OCF)
default async event void CompareC.fired() { }
AVR_ATOMIC_HANDLER(TIMER1_COMPC_vect) { signal CompareC.fired(); }
async command bool CompareC.test() { return TIFR1 & (1 << OCF1C); }
async command void CompareC.reset() { TIFR1 = 1 << OCF1C; }
// ----- COMPARE A: timer interrupt mask register (TIMSK), output compare interrupt enable (OCIE)
async command void CompareA.start()
{
SET_BIT(TIMSK1, OCIE1A);
call McuPowerState.update();
}
async command void CompareA.stop()
{
CLR_BIT(TIMSK1, OCIE1A);
call McuPowerState.update();
}
async command bool CompareA.isOn() { return TIMSK1 & (1 << OCIE1A); }
// ----- COMPARE B: timer interrupt mask register (TIMSK), output compare interrupt enable (OCIE)
async command void CompareB.start()
{
SET_BIT(TIMSK1, OCIE1B);
call McuPowerState.update();
}
async command void CompareB.stop()
{
CLR_BIT(TIMSK1, OCIE1B);
call McuPowerState.update();
}
async command bool CompareB.isOn() { return TIMSK1 & (1 << OCIE1B); }
// ----- COMPARE C: timer interrupt mask register (TIMSK), output compare interrupt enable (OCIE)
async command void CompareC.start()
{
SET_BIT(TIMSK1, OCIE1C);
call McuPowerState.update();
}
async command void CompareC.stop()
{
CLR_BIT(TIMSK1, OCIE1C);
call McuPowerState.update();
}
async command bool CompareC.isOn() { return TIMSK1 & (1 << OCIE1C); }
// ----- COMPARE A: timer control register (TCCR), compare output mode (COM)
async command void CompareA.setMode(uint8_t mode)
{
atomic
{
TCCR1A = (TCCR1A & ~(0x3 << COM1A0))
| (mode & 0x3) << COM1A0;
}
}
async command uint8_t CompareA.getMode()
{
return (TCCR1A >> COM1A0) & 0x3;
}
// ----- COMPARE B: timer control register (TCCR), compare output mode (COM)
async command void CompareB.setMode(uint8_t mode)
{
atomic
{
TCCR1B = (TCCR1B & ~(0x3 << COM1B0))
| (mode & 0x3) << COM1B0;
}
}
async command uint8_t CompareB.getMode()
{
return (TCCR1B >> COM1B0) & 0x3;
}
// ----- COMPARE C: timer control register (TCCR), compare output mode (COM)
async command void CompareC.setMode(uint8_t mode)
{
atomic
{
TCCR1C = (TCCR1C & ~(0x3 << COM1C0))
| (mode & 0x3) << COM1C0;
}
}
async command uint8_t CompareC.getMode()
{
return (TCCR1C >> COM1C0) & 0x3;
}
// ----- COMPARE A: timer control register (TCCR), force output compare (FOC)
async command void CompareA.force()
{
SET_BIT(TCCR1C, FOC1A);
}
// ----- COMPARE B: timer control register (TCCR), force output compare (FOC)
async command void CompareB.force()
{
SET_BIT(TCCR1C, FOC1B);
}
// ----- COMPARE C: timer control register (TCCR), force output compare (FOC)
async command void CompareC.force()
{
SET_BIT(TCCR1C, FOC1C);
}
// ----- CAPTURE: input capture register (ICR)
async command uint16_t Capture.get()
{
atomic return ICR1;
}
async command void Capture.set(uint16_t value)
{
atomic ICR1 = value;
}
// ----- CAPTURE: timer interrupt flag register (TIFR), input capture flag (ICF)
default async event void Capture.fired() { }
AVR_ATOMIC_HANDLER(TIMER1_CAPT_vect) { signal Capture.fired(); }
async command bool Capture.test() { return TIFR1 & (1 << ICF1); }
async command void Capture.reset() { TIFR1 = 1 << ICF1; }
// ----- CAPTURE: timer interrupt mask register (TIMSK), input capture interrupt enable (ICIE)
async command void Capture.start()
{
SET_BIT(TIMSK1, ICIE1);
call McuPowerState.update();
}
async command void Capture.stop()
{
CLR_BIT(TIMSK1, ICIE1);
call McuPowerState.update();
}
async command bool Capture.isOn() { return TIMSK1 & (1 << ICIE1); }
// ----- CAPTURE: timer control register (TCCR), input capture mode (COM)
async command void Capture.setMode(uint8_t mode)
{
atomic
{
TCCR1B = (TCCR1B & ~(0x3 << ICES1))
| (mode & 0x3) << ICES1;
}
}
async command uint8_t Capture.getMode()
{
return (TCCR1B >> ICES1) & 0x3;
}
// ----- MCUPOWER
async command mcu_power_t McuPowerOverride.lowestState()
{
// if we need to wake up by this clock
if( TIMSK1 & (1 << OCIE1A | 1 << OCIE1B | 1 << OCIE1C | 1 << ICIE1) )
return ATM128_POWER_IDLE;
else
return ATM128_POWER_DOWN;
}
}
|