File: CC2520DriverLayerP.nc

package info (click to toggle)
tinyos 2.1.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster, jessie, jessie-kfreebsd, stretch
  • size: 47,476 kB
  • ctags: 36,607
  • sloc: ansic: 63,646; cpp: 14,974; java: 10,358; python: 5,215; makefile: 1,724; sh: 902; asm: 597; xml: 392; perl: 74; awk: 46
file content (1907 lines) | stat: -rw-r--r-- 52,243 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
/*
 * Copyright (c) 2010, Vanderbilt University
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:  
 *
 * - Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the
 *   distribution.
 * - Neither the name of the copyright holder nor the names of
 *   its contributors may be used to endorse or promote products derived
 *   from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
 * COPYRIGHT HOLDER OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/**
 *
 * Author: Janos Sallai, Miklos Maroti
 * Author: Thomas Schmid (port to CC2520)
 * Author: JeongGil Ko (CC2520 modifications and security support)
 */

#include <CC2520DriverLayer.h>
#include <Tasklet.h>
#include <RadioAssert.h>
#include <TimeSyncMessageLayer.h>
#include <RadioConfig.h>

module CC2520DriverLayerP
{
  provides{
    interface Init as SoftwareInit @exactlyonce();

    interface RadioState;
    interface RadioSend;
    interface RadioReceive;
    interface RadioCCA;
    interface RadioPacket;

    interface PacketField<uint8_t> as PacketTransmitPower;
    interface PacketField<uint8_t> as PacketRSSI;
    interface PacketField<uint8_t> as PacketTimeSyncOffset;
    interface PacketField<uint8_t> as PacketLinkQuality;
    //interface PacketField<uint8_t> as AckReceived;
    interface PacketAcknowledgements;
  }

  uses{
    interface BusyWait<TMicro, uint16_t>;
    interface LocalTime<TRadio>;
    interface CC2520DriverConfig as Config;

    interface Resource as SpiResource;
    interface SpiByte;
    interface SpiPacket;
    interface GeneralIO as CSN;
    interface GeneralIO as VREN;
    interface GeneralIO as CCA;
    interface GeneralIO as RSTN;
    interface GeneralIO as FIFO;
    interface GeneralIO as FIFOP;
    interface GeneralIO as SFD;
    interface GpioCapture as SfdCapture;
    interface GpioInterrupt as FifopInterrupt;
    interface GpioInterrupt as FifoInterrupt;

    interface PacketFlag as TransmitPowerFlag;
    interface PacketFlag as RSSIFlag;
    interface PacketFlag as TimeSyncFlag;
    interface PacketFlag as AckReceivedFlag;

    interface PacketTimeStamp<TRadio, uint32_t>;

    interface Tasklet;
    interface RadioAlarm;

#ifdef RADIO_DEBUG_MESSAGES
    interface DiagMsg;
#endif
    interface Leds;
    interface Draw;

    interface CC2520Security;
  }
}

implementation{

#define HI_UINT16(val) (((val) >> 8) & 0xFF)
#define LO_UINT16(val) ((val) & 0xFF)
#define ADDR_DATA 0x200
#define ADDR_NONCE 0x320
#define ADDR_KEY 0x340
#define HIGH_PRIORITY 1
#define LOW_PRIORITY 0
#define NONCE_FLAG_BYTE 0x09

  inline void serviceRadio();
  inline void downloadMessage();

  uint8_t pKey[]= {
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  };

  uint8_t decNonce[]= {
    0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
  };

  uint8_t encNonce[]= {
    0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
  };

  cc2520_header_t* getHeader(message_t* msg)
  {
    return ((void*)msg) + call Config.headerLength(msg);
  }

  /*
   * Return a pointer to the data portion of the message.
   */
  void* getPayload(message_t* msg){
    return ((void*)msg)  + call RadioPacket.headerLength(msg);
  }

  cc2520_metadata_t* getMeta(message_t* msg){
    return ((void*)msg) + sizeof(message_t) - call RadioPacket.metadataLength(msg);
  }

  /*----------------- STATE -----------------*/

  enum{
    STATE_VR_ON = 0,
    STATE_PD = 1,
    STATE_PD_2_IDLE = 2,
    STATE_IDLE = 3,
    STATE_IDLE_2_RX_ON = 4,
    STATE_RX_ON = 5,
    STATE_BUSY_TX_2_RX_ON = 6,
    STATE_IDLE_2_TX_ON = 7,
    STATE_TX_ON = 8,
    STATE_RX_DOWNLOAD = 9,
  };

  tasklet_norace uint8_t state = STATE_VR_ON;

  enum{
    CMD_NONE = 0,           // the state machine has stopped
    CMD_TURNOFF = 1,        // goto SLEEP state
    CMD_STANDBY = 2,        // goto TRX_OFF state
    CMD_TURNON = 3,         // goto RX_ON state
    CMD_TRANSMIT = 4,       // currently transmitting a message
    CMD_RECEIVE = 5,        // currently receiving a message
    CMD_CCA = 6,            // performing clear chanel assesment
    CMD_CHANNEL = 7,        // changing the channel
    CMD_SIGNAL_DONE = 8,        // signal the end of the state transition
    CMD_DOWNLOAD = 9,       // download the received message
  };

  tasklet_norace uint8_t cmd = CMD_NONE;

  norace bool radioIrq = 0;

  tasklet_norace uint8_t txPower;
  tasklet_norace uint8_t channel;

  tasklet_norace message_t* rxMsg;
  //#ifdef RADIO_DEBUG_MESSAGES
  tasklet_norace message_t* txMsg;
  //#endif
  message_t rxMsgBuffer;

  uint32_t capturedTime;  // the current time when the last interrupt has occured

  tasklet_norace uint8_t rssiClear;
  tasklet_norace uint8_t rssiBusy;
  norace bool first_packet = TRUE;
  norace bool sending = FALSE;
  norace bool receiving = FALSE;
  norace bool security_processing = FALSE;

  // used to continue tx after sfd
  norace uint8_t* txData;
  norace uint8_t header;
  norace uint8_t prevdata9, prevdata10;
  norace uint8_t secMode;
  norace uint8_t txLength;
  norace ieee154_simple_header_t* txIeee154header;

  enum{ // FIXME: need to check these for CC2520
    TX_SFD_DELAY = (uint16_t)(0 * RADIO_ALARM_MICROSEC),
    RX_SFD_DELAY = (uint16_t)(7 * RADIO_ALARM_MICROSEC/2),
  };

  inline cc2520_status_t getStatus();
  //inline void sendDoneSignal(error_t error, bool ack);

  tasklet_async event void RadioAlarm.fired(){

    if( state == STATE_PD_2_IDLE ) {
      state = STATE_IDLE;
      if( cmd == CMD_STANDBY )
        cmd = CMD_SIGNAL_DONE;
    }
    else if( state == STATE_IDLE_2_RX_ON ) {
      state = STATE_RX_ON;
      // in receive mode, enable SFD capture
      //call SfdCapture.captureRisingEdge(); //JK

      cmd = CMD_SIGNAL_DONE;
    }else{
      RADIO_ASSERT(FALSE);
    }

    // make sure the rest of the command processing is called
    call Tasklet.schedule();
  }

  /*----------------- REGISTER -----------------*/

  inline cc2520_status_t writeRegister(uint8_t reg, uint8_t value){
    cc2520_status_t status;
    uint8_t v;

    RADIO_ASSERT( call SpiResource.isOwner() );

    call CSN.set();
    call CSN.clr();

    if( reg <= CC2520_FREG_MASK){
      // we can use 1 byte less to write this register using the
      // register write command

      RADIO_ASSERT( reg == (reg & CC2520_FREG_MASK) );


      status.value = call SpiByte.write(CC2520_CMD_REGISTER_WRITE | reg);

    }
    else{
      // we have to use the memory write command as the register is in
      // SREG

      RADIO_ASSERT( reg == (reg & CC2520_SREG_MASK) );

      // the register has to be below the 0x100 memory address. Thus, we
      // don't have to add anything to the MEMORY_WRITE command.
      status.value = call SpiByte.write(CC2520_CMD_MEMORY_WRITE);
      status.value = call SpiByte.write(reg);

    }
    // v is the value previously in the register
    v = call SpiByte.write(value);

    call CSN.set();

    return status;

  }

  /* New function by JK  -- identical to MEMWR function */
  /* This function is to write data to memory spaces above 0x200 */
  inline cc2520_status_t writeMemory(uint16_t mem_addr, uint8_t* value, uint8_t count){
    cc2520_status_t status;
    uint8_t v, i;

    if(mem_addr < 0x200){
      mem_addr = 0x200;
    }

    RADIO_ASSERT( call SpiResource.isOwner() );

    call CSN.set();
    call CSN.clr();

    status.value = call SpiByte.write(CC2520_CMD_MEMORY_WRITE | HI_UINT16(mem_addr));
    status.value = call SpiByte.write(LO_UINT16(mem_addr));

    for(i=0;i<count;i++){
      v = call SpiByte.write(value[i]);
    }

    /* 
       s = CC2520_SPI_TXRX(CC2520_INS_MEMWR | HI_UINT16(addr));
       CC2520_SPI_TXRX(LO_UINT16(addr));
       while (count--) {
       CC2520_SPI_TX(*pData);
       pData++;
       CC2520_SPI_WAIT_RXRDY();
       }
       */

    call CSN.set();

    return status;
  }

  // JK: Need to check!
  inline uint8_t readMemory(uint16_t mem_addr, uint8_t* buf, uint8_t count){
    uint8_t i, value = 0;

    RADIO_ASSERT( call SpiResource.isOwner() );

    call CSN.set();
    call CSN.clr();

    call SpiByte.write(CC2520_CMD_MEMORY_READ | HI_UINT16(mem_addr));
    call SpiByte.write(LO_UINT16(mem_addr));

    for(i=0;i<count;i++){
      buf[i] = call SpiByte.write(0);
    }

    /*
       s = CC2520_SPI_TXRX(CC2520_INS_MEMRD | HI_UINT16(addr));
       CC2520_SPI_TXRX(LO_UINT16(addr));
       CC2520_INS_RD_ARRAY(count, pData);
       */

    call CSN.set();

    return value;
  }


  inline void CCM(uint8_t priority, uint8_t key_addr, uint8_t payload_len, uint8_t nonce_addr, uint16_t start_addr, uint16_t dest_addr, uint8_t auth_len, uint8_t mic_len){

    RADIO_ASSERT( call SpiResource.isOwner() );

    call CSN.set();
    call CSN.clr();

    call SpiByte.write(CC2520_CMD_CCM | priority);
    call SpiByte.write(key_addr);
    call SpiByte.write(payload_len);
    call SpiByte.write(nonce_addr);
    call SpiByte.write((HI_UINT16(start_addr) << 4) | HI_UINT16(dest_addr));
    call SpiByte.write(LO_UINT16(start_addr));
    call SpiByte.write(LO_UINT16(dest_addr));
    call SpiByte.write(auth_len);
    call SpiByte.write(mic_len);

    call CSN.set();

    return;

  }

  inline void UCCM(uint8_t priority, uint8_t key_addr, uint8_t payload_len, uint8_t nonce_addr, uint16_t start_addr, uint16_t dest_addr, uint8_t auth_len, uint8_t mic_len){

    RADIO_ASSERT( call SpiResource.isOwner() );

    call CSN.set();
    call CSN.clr();

    call SpiByte.write(CC2520_CMD_CCM | priority);
    call SpiByte.write(key_addr);
    call SpiByte.write(payload_len);
    call SpiByte.write(nonce_addr);
    call SpiByte.write((HI_UINT16(start_addr) << 4) | HI_UINT16(dest_addr));
    call SpiByte.write(LO_UINT16(start_addr));
    call SpiByte.write(LO_UINT16(dest_addr));
    call SpiByte.write(auth_len);
    call SpiByte.write(mic_len);

    call CSN.set();

    return;
  }

  inline void CBCMAC(uint8_t priority, uint8_t key_addr, uint8_t payload_len, uint16_t start_addr, uint16_t dest_addr, uint8_t mic_len){

    RADIO_ASSERT( call SpiResource.isOwner() );

    call CSN.set();
    call CSN.clr();

    call SpiByte.write(CC2520_CMD_CCM | priority);
    call SpiByte.write(key_addr);
    call SpiByte.write(payload_len);
    call SpiByte.write((HI_UINT16(start_addr) << 4) | HI_UINT16(dest_addr));
    call SpiByte.write(LO_UINT16(start_addr));
    call SpiByte.write(LO_UINT16(dest_addr));
    call SpiByte.write(mic_len);

    call CSN.set();

    return;

  }

  inline void UCBCMAC(){}

  inline void CTR(uint8_t priority, uint8_t key_addr, uint8_t payload_len, uint8_t nonce_addr, uint16_t start_addr, uint16_t dest_addr){
    RADIO_ASSERT( call SpiResource.isOwner() );

    call CSN.set();
    call CSN.clr();

    call SpiByte.write(CC2520_CMD_CTR_UCTR | priority);
    call SpiByte.write(key_addr);
    call SpiByte.write(payload_len);
    call SpiByte.write(nonce_addr);

    call SpiByte.write((HI_UINT16(start_addr) << 4) | HI_UINT16(dest_addr));
    call SpiByte.write(LO_UINT16(start_addr));
    call SpiByte.write(LO_UINT16(dest_addr));

    call CSN.set();

    return;
  }

  inline void UCTR(uint8_t priority, uint8_t key_addr, uint8_t payload_len, uint8_t nonce_addr, uint16_t start_addr, uint16_t dest_addr){
    CTR(priority, key_addr, payload_len, nonce_addr, start_addr, dest_addr);
    return;
  }


  inline void MEMCP(uint8_t priority, uint16_t count, uint16_t start_addr, uint16_t dest_addr){

    RADIO_ASSERT( call SpiResource.isOwner() );

    call CSN.set();
    call CSN.clr();

    call SpiByte.write(CC2520_CMD_MEMCP | priority);
    call SpiByte.write(count);
    call SpiByte.write((HI_UINT16(start_addr) << 4) | HI_UINT16(dest_addr));
    call SpiByte.write(LO_UINT16(start_addr));
    call SpiByte.write(LO_UINT16(dest_addr));

    call CSN.set();

    return;

  }

  /*
   * Strobes changed a lot between CC2420 and CC2520. They are now just an
   * other command, without any parameters.
   */
  inline cc2520_status_t strobe(uint8_t reg){
    cc2520_status_t status;

    RADIO_ASSERT( call SpiResource.isOwner() );

    call CSN.set();
    call CSN.clr();

    status.value = call SpiByte.write(reg);

    call CSN.set();
    return status;

  }

  inline cc2520_status_t getStatus() {
    return strobe(CC2520_CMD_SNOP);
  }

  inline uint8_t readRegister(uint8_t reg){
    uint8_t value = 0;

    RADIO_ASSERT( call SpiResource.isOwner() );

    call CSN.set();
    call CSN.clr();

    if( reg <= CC2520_FREG_MASK ){
      RADIO_ASSERT( reg == (reg & CC2520_FREG_MASK) );
      call SpiByte.write(CC2520_CMD_REGISTER_READ | reg);

    }
    else{
      RADIO_ASSERT( reg == (reg & CC2520_SREG_MASK) );

      call SpiByte.write(CC2520_CMD_MEMORY_WRITE);
      call SpiByte.write(reg);
    }

    value = call SpiByte.write(0);
    call CSN.set();

    return value;
  }

  inline cc2520_status_t writeTxFifo(uint8_t* data, uint8_t length){
    cc2520_status_t status;
    uint8_t idx;

    RADIO_ASSERT( call SpiResource.isOwner() );

    call CSN.set();
    call CSN.clr();

    status.value = call SpiByte.write(CC2520_CMD_TXBUF);
    // FIXME: replace this at some point with a SPIPacket call.
    for(idx = 0; idx<length; idx++)
      call SpiByte.write(data[idx]);

    call CSN.set();

    return status;

  }

  inline uint8_t waitForRxFifoNoTimeout() {
    // wait for fifo to go high
    while(call FIFO.get() == 0);

    return call FIFO.get();
  }

  inline uint8_t waitForRxFifo() {
    // wait for fifo to go high or timeout
    // timeout is now + 2 byte time (4 symbol time)
    uint16_t timeout = call RadioAlarm.getNow() + 4 * CC2520_SYMBOL_TIME;

    while(call FIFO.get() == 0 && (timeout - call RadioAlarm.getNow() < 0x7FFF));
    return call FIFO.get();
  }

  inline cc2520_status_t readLengthFromRxFifo(uint8_t* lengthPtr){
    cc2520_status_t status;

    RADIO_ASSERT( call SpiResource.isOwner() );
    RADIO_ASSERT( call CSN.get() == 1 );

    // FIXME: ???? why do we do this ????
    call CSN.set();
    call CSN.clr();
    call CSN.set();
    call CSN.clr();
    call CSN.set();
    call CSN.clr();

    status.value = call SpiByte.write(CC2520_CMD_RXBUF);
    //waitForRxFifoNoTimeout();
    *lengthPtr = call SpiByte.write(0);
    return status;
  }

  inline cc2520_status_t readLengthFromRxFifo_cp(uint8_t* lengthPtr){
    cc2520_status_t status;

    RADIO_ASSERT( call SpiResource.isOwner() );
    RADIO_ASSERT( call CSN.get() == 1 );

    // FIXME: ???? why do we do this ????
    call CSN.set();
    call CSN.clr();
    call CSN.set();
    call CSN.clr();
    call CSN.set();
    call CSN.clr();

    status.value = call SpiByte.write(CC2520_CMD_RXBUFCP);
    //waitForRxFifoNoTimeout();
    *lengthPtr = call SpiByte.write(0);
    return status;
  }


  inline void readPayloadFromRxFifo(uint8_t* data, uint8_t length){
    uint8_t idx;

    // readLengthFromRxFifo was called before, so CSN is cleared and spi is ours
    RADIO_ASSERT( call CSN.get() == 0 );

    for(idx = 0; idx<length; idx++) {
      //waitForRxFifo();
      RADIO_ASSERT(call FIFO.get());
      data[idx] = call SpiByte.write(0);
    }
  }

  inline void readRssiFromRxFifo(uint8_t* rssiPtr){
    // FIXME: make sure that RSSI is added to the frame in the
    // configuration! See 20.3.4 in CC2520 Manual (Dec. 2007)

    // readLengthFromRxFifo was called before, so CSN is cleared and spi is ours

    //waitForRxFifo();
    RADIO_ASSERT(call FIFO.get());
    *rssiPtr = call SpiByte.write(0);
  }

  inline void readCrcOkAndLqiFromRxFifo(uint8_t* crcOkAndLqiPtr){
    // readLengthFromRxFifo was called before, so CSN is cleared and spi is ours

    RADIO_ASSERT( call CSN.get() == 0 );

    //waitForRxFifo(); // JK
    *crcOkAndLqiPtr = call SpiByte.write(0);

    // end RxFifo read operation
    call CSN.set();
  }

  inline void flushRxFifo() {
    // set it to stop possible pending fifo transfer

    {
      cc2520_status_t status;


      strobe(CC2520_CMD_SFLUSHRX);
      strobe(CC2520_CMD_SFLUSHRX);
      strobe(CC2520_CMD_SFLUSHRX);
      status = strobe(CC2520_CMD_SFLUSHRX);

#ifdef RADIO_DEBUG_MESSAGES
      if( call DiagMsg.record() ){
        call DiagMsg.str("b_flush");
        call DiagMsg.uint8(status.value);
        call DiagMsg.send();
      }
#endif
    }
  }

  /*----------------- INIT -----------------*/

  command error_t SoftwareInit.init(){
    // set pin directions
    call CSN.makeOutput();
    call VREN.makeOutput();
    call RSTN.makeOutput();
    call CCA.makeInput();
    call SFD.makeInput();
    call FIFO.makeInput();
    call FIFOP.makeInput();

    call FifopInterrupt.disable();
    call FifopInterrupt.enableRisingEdge();

    call FifoInterrupt.disable();
    call FifoInterrupt.enableRisingEdge();

    call SfdCapture.disable();
    // rising edge just saves timestamp.
    call SfdCapture.captureRisingEdge();

    // CSN is active low
    call CSN.set();

    // start up voltage regulator
    call VREN.clr();
    call VREN.set();
    // do a reset
    call RSTN.clr();
    // hold line low for Tdres
    call BusyWait.wait( 200 ); // typical .1ms VR startup time

    call RSTN.set();
    // wait another .2ms for xosc to stabilize
    call BusyWait.wait( 200 );

    rxMsg = &rxMsgBuffer;

    state = STATE_VR_ON;

    // request SPI, rest of the initialization will be done from
    // the granted event
    return call SpiResource.request();
  }

  inline void resetRadio() {
    // now register access is enabled: set up defaults
    cc2520_fifopctrl_t fifopctrl;
    cc2520_frmfilt0_t frmfilt0;
    cc2520_frmfilt1_t frmfilt1;
    cc2520_srcmatch_t srcmatch;
    //cc2520_frmctrl0_t frmctrl0;

    // do a reset
    call RSTN.clr();
    //call BusyWait.wait( 200 ); //
    call RSTN.set();

    // update default values of registers
    // given from SWRS068, December 2007, Section 28.1
    writeRegister(CC2520_TXPOWER, cc2520_txpower_default.value);
    writeRegister(CC2520_CCACTRL0, cc2520_ccactrl0_default.value);
    writeRegister(CC2520_MDMCTRL0, cc2520_mdmctrl0_default.value);
    writeRegister(CC2520_MDMCTRL1, cc2520_mdmctrl1_default.value);
    writeRegister(CC2520_RXCTRL, cc2520_rxctrl_default.value);
    writeRegister(CC2520_FSCTRL, cc2520_fsctrl_default.value);
    writeRegister(CC2520_FSCAL1, cc2520_fscal1_default.value);
    writeRegister(CC2520_AGCCTRL1, cc2520_agcctrl1_default.value);
    writeRegister(CC2520_ADCTEST0, cc2520_adctest0_default.value);
    writeRegister(CC2520_ADCTEST1, cc2520_adctest1_default.value);
    writeRegister(CC2520_ADCTEST2, cc2520_adctest2_default.value);

    // setup fifop threshold
    fifopctrl.f.fifop_thr = 127;
    writeRegister(CC2520_FIFOPCTRL, fifopctrl.value);

    // FIXME: disable frame filtering for now
    frmfilt0 = cc2520_frmfilt0_default;
    frmfilt0.f.frame_filter_en = 0;
    writeRegister(CC2520_FRMFILT0, frmfilt0.value);

    //frmctrl0 = cc2520_frmctrl0_default;
    //frmctrl0.f.autoack = 1;
    //writeRegister(CC2520_FRMCTRL0, frmctrl0.value);

    // accept reserved frames
    frmfilt1 = cc2520_frmfilt1_default;
    frmfilt1.f.accept_ft_4to7_reserved = 1;
    writeRegister(CC2520_FRMFILT1, frmfilt1.value);

    // disable src address decoding
    srcmatch = cc2520_srcmatch_default;
    srcmatch.f.src_match_en = 0;
    writeRegister(CC2520_SRCMATCH, srcmatch.value);

    // enable auto crc and append rssi to frame
    // this is done by default.
  }

  void initRadio(){
    resetRadio();

    atomic first_packet = TRUE;

    txPower = CC2520_DEF_RFPOWER & CC2520_TX_PWR_MASK;
    channel = CC2520_DEF_CHANNEL & CC2520_CHANNEL_MASK;

    state = STATE_PD;
  }

  /*----------------- SPI -----------------*/

  event void SpiResource.granted(){

    call CSN.makeOutput();
    call CSN.set();

    if( state == STATE_VR_ON ){
      initRadio();
      call SpiResource.release();
    }else if(state == STATE_RX_DOWNLOAD){
      downloadMessage();
    }else
      call Tasklet.schedule();
  }

  bool isSpiAcquired(){
    if( call SpiResource.isOwner() ){
      call CSN.makeOutput();
      call CSN.set();
      return TRUE;
    }

    if( call SpiResource.immediateRequest() == SUCCESS ){
      call CSN.makeOutput();
      call CSN.set();

      return TRUE;
    }

    call SpiResource.request();
    return FALSE;
  }

  async event void SpiPacket.sendDone(uint8_t* txBuf, uint8_t* rxBuf, uint16_t len, error_t error) {};

  /*----------------- CHANNEL -----------------*/

  tasklet_async command uint8_t RadioState.getChannel(){
    return channel;
  }

  tasklet_async command error_t RadioState.setChannel(uint8_t c){
    c &= CC2520_CHANNEL_MASK;

    if( cmd != CMD_NONE )
      return EBUSY;
    else if( channel == c )
      return EALREADY;

    channel = c;
    cmd = CMD_CHANNEL;
    call Tasklet.schedule();

    return SUCCESS;
  }

  inline void setChannel(){
    cc2520_freqctrl_t freqctrl;
    // set up freq
    freqctrl = cc2520_freqctrl_default;
    freqctrl.f.freq = 11 + 5 * (channel - 11);
#ifdef RADIO_DEBUG_MESSAGES
    if( call DiagMsg.record() ){
      call DiagMsg.str("freqctrl");
      call DiagMsg.uint8(freqctrl.value);
      call DiagMsg.send();
    }
#endif

    writeRegister(CC2520_FREQCTRL, freqctrl.value);
  }

  inline void changeChannel(){
    RADIO_ASSERT( cmd == CMD_CHANNEL );
    RADIO_ASSERT( state == STATE_PD || state == STATE_IDLE || ( state == STATE_RX_ON && call RadioAlarm.isFree()));

    if( isSpiAcquired() ){
      setChannel();

      if( state == STATE_RX_ON ) {
        call RadioAlarm.wait(IDLE_2_RX_ON_TIME); // 12 symbol periods
        state = STATE_IDLE_2_RX_ON;
      }
      else
        cmd = CMD_SIGNAL_DONE;
    }
  }

  /*----------------- TURN ON/OFF -----------------*/

  inline void changeState(){

    if( (cmd == CMD_STANDBY || cmd == CMD_TURNON)
        && state == STATE_PD  && isSpiAcquired() && call RadioAlarm.isFree() ){

      // start oscillator
      strobe(CC2520_CMD_SXOSCON);

      call RadioAlarm.wait(PD_2_IDLE_TIME); // .86ms OSC startup time
      state = STATE_PD_2_IDLE;
    }
    else if( cmd == CMD_TURNON && state == STATE_IDLE && isSpiAcquired() && call RadioAlarm.isFree()){
      // setChannel was ignored in SLEEP because the SPI was not working, so do it here
      setChannel();

      // start receiving
      strobe(CC2520_CMD_SRXON);
      call RadioAlarm.wait(IDLE_2_RX_ON_TIME); // 12 symbol periods
      state = STATE_IDLE_2_RX_ON;
    }
    else if( (cmd == CMD_TURNOFF || cmd == CMD_STANDBY)
        && state == STATE_RX_ON && isSpiAcquired() ){
      // stop receiving
      strobe(CC2520_CMD_SRFOFF);

      state = STATE_IDLE;
    }

    if( cmd == CMD_TURNOFF && state == STATE_IDLE  && isSpiAcquired() ){
      // stop oscillator
      strobe(CC2520_CMD_SXOSCOFF);

      // do a reset
      initRadio();
      state = STATE_PD;
      cmd = CMD_SIGNAL_DONE;
    }
    else if( cmd == CMD_STANDBY && state == STATE_IDLE )
      cmd = CMD_SIGNAL_DONE;
  }

  // TODO: turn off SFD capture when turning off radio
  tasklet_async command error_t RadioState.turnOff(){
    if( cmd != CMD_NONE )
      return EBUSY;
    else if( state == STATE_PD )
      return EALREADY;

#ifdef RADIO_DEBUG_MESSAGES
    if( call DiagMsg.record() ){
      call DiagMsg.str("turnOff");
      call DiagMsg.send();
    }
#endif

    cmd = CMD_TURNOFF;
    call Tasklet.schedule();

    return SUCCESS;
  }

  tasklet_async command error_t RadioState.standby(){
    if( cmd != CMD_NONE || (state == STATE_PD && ! call RadioAlarm.isFree()) )
      return EBUSY;
    else if( state == STATE_IDLE )
      return EALREADY;

#ifdef RADIO_DEBUG_MESSAGES
    if( call DiagMsg.record() ){
      call DiagMsg.str("standBy");
      call DiagMsg.send();
    }
#endif

    cmd = CMD_STANDBY;
    call Tasklet.schedule();

    return SUCCESS;
  }

  // TODO: turn on SFD capture when turning off radio
  tasklet_async command error_t RadioState.turnOn(){
    if( cmd != CMD_NONE || (state == STATE_PD && ! call RadioAlarm.isFree()) )
      return EBUSY;
    else if( state == STATE_RX_ON )
      return EALREADY;

#ifdef RADIO_DEBUG_MESSAGES
    if( call DiagMsg.record() ){
      call DiagMsg.str("turnOn");
      call DiagMsg.send();
    }
#endif

    cmd = CMD_TURNON;
    call Tasklet.schedule();

    return SUCCESS;
  }

  default tasklet_async event void RadioState.done() {}

  /*----------------- TRANSMIT -----------------*/

  tasklet_async command error_t RadioSend.send(message_t* msg){
    uint8_t p;
    uint8_t micLength = 0;
    uint32_t frameCounter;
    cc2520_status_t status;
    security_header_t* secHdr;

    secMode = 0;
    prevdata9 = 0;
    prevdata10 = 0;

    if( cmd != CMD_NONE || (state != STATE_IDLE && state != STATE_RX_ON) || ! isSpiAcquired() || radioIrq )
      return EBUSY;

    p = (call PacketTransmitPower.isSet(msg) ?
        call PacketTransmitPower.get(msg) : CC2520_DEF_RFPOWER) & CC2520_TX_PWR_MASK;

    if( p != txPower ){
      cc2520_txpower_t txpower = cc2520_txpower_default;

      txPower = p;

      txpower.f.pa_power = txPower;
      writeRegister(CC2520_TXPOWER, txpower.value);
    }

#ifdef RADIO_DEBUG_MESSAGES
    {
      uint8_t tmp1, tmp2;
      tmp1 = call Config.requiresRssiCca(msg);
      tmp2 = call CCA.get();
      if( call DiagMsg.record() ){
        call DiagMsg.str("cca");
        call DiagMsg.int8(tmp1);
        call DiagMsg.int8(tmp2);
        call DiagMsg.send();
      }
      if( tmp1 && !tmp2)
        return EBUSY;
    }
#else
    if( call Config.requiresRssiCca(msg) && !call CCA.get() )
      return EBUSY;
#endif

    // there's a chance that there was a receive SFD interrupt in such a
    // short time.
    // TODO: there's still a chance

    atomic if (call SFD.get() == 1 || radioIrq)
      return EBUSY;
    else
      // stop receiving
      strobe(CC2520_CMD_SRFOFF);

    RADIO_ASSERT( ! radioIrq );

    txData = getPayload(msg);
    txLength = getHeader(msg)->length;

    secMode = call CC2520Security.getSecurityMode();
    txIeee154header = (ieee154_simple_header_t*)txData;

    if(secMode > 0 &&  (txIeee154header->fcf & (IEEE154_TYPE_DATA << IEEE154_FCF_FRAME_TYPE))){

      // Note that the payload starts at txData[9] when 16 bit addressing is used
      frameCounter = call CC2520Security.getFrameCounter();
      frameCounter = 0;
      memcpy(&encNonce[3], &frameCounter, 4);

      writeMemory(ADDR_DATA, &txData[11], 2);

      //JK: Set security related parameters
      writeMemory(ADDR_KEY, call CC2520Security.getKey(), 16);
      writeMemory(ADDR_NONCE, encNonce, 16);

      MEMCP(HIGH_PRIORITY, 16, ADDR_KEY, ADDR_KEY);
      MEMCP(HIGH_PRIORITY, 16, ADDR_NONCE, ADDR_NONCE);

      //JK: Send ENC command

      while(security_processing){}

      security_processing = TRUE;

      if(secMode == CTR_MODE){
        micLength = 0;
        CTR(HIGH_PRIORITY, ADDR_KEY/16, txLength - 11 - 2, ADDR_NONCE/16, ADDR_DATA, 0); //11 for txData and 2 for fcs
      }else if(secMode == CBC_MAC_4){
        micLength = 4;
        CBCMAC(HIGH_PRIORITY, ADDR_KEY/16, txLength - 11 - 2, ADDR_DATA, 0, 1);
      }else if(secMode == CBC_MAC_8){
        micLength = 8;
        CBCMAC(HIGH_PRIORITY, ADDR_KEY/16, txLength - 11 - 2, ADDR_DATA, 0, 2);
      }else if(secMode == CBC_MAC_16){
        micLength = 16;
        CBCMAC(HIGH_PRIORITY, ADDR_KEY/16, txLength - 11 - 2, ADDR_DATA, 0, 3);
      }else if(secMode == CCM_4){
        micLength = 4;
        CCM(HIGH_PRIORITY, ADDR_KEY/16, txLength - 11 - 2, ADDR_NONCE/16, ADDR_DATA, 0, txLength - 11 - 2, 1);
      }else if(secMode == CCM_8){
        micLength = 8;
        CCM(HIGH_PRIORITY, ADDR_KEY/16, txLength - 11 - 2, ADDR_NONCE/16, ADDR_DATA, 0, txLength - 11 - 2, 2);
      }else if(secMode == CCM_16){
        micLength = 16;
        CCM(HIGH_PRIORITY, ADDR_KEY/16, txLength - 11 - 2, ADDR_NONCE/16, ADDR_DATA, 0, txLength - 11 - 2, 3);
      }

      status = getStatus();
      while(status.dpu_h_active)
        status = getStatus();

      readMemory(ADDR_DATA, &txData[11+sizeof(security_header_t)], 2 + micLength);

      security_processing = FALSE;

      txData[9+sizeof(security_header_t)] = txData[9];
      txData[10+sizeof(security_header_t)] = txData[10];

      prevdata9 = txData[9];
      prevdata10 = txData[10];

      secHdr = (security_header_t*)&txData[9]; // beginning of txData section

      secHdr->secLevel = secMode;
      secHdr->keyMode = 1; // Fixed to 1 for now
      secHdr->reserved = 0;
      secHdr->frameCounter = frameCounter;
      secHdr->keyID[0] = 1; // Always first position for now due to fixed keyMode

      txIeee154header->fcf |= 1 << IEEE154_FCF_SECURITY_ENABLED;

      txLength += (sizeof(security_header_t) + micLength);

    }

    // txLength | txData[0] ... txData[txLength-3] | automatically generated FCS

    atomic writeTxFifo(&txLength, 1);

    // FCS is automatically generated
    txLength -= 2;

    // preload fcf, dsn, destpan, and dest
    header = call Config.headerPreloadLength();
    if( header > txLength )
      header = txLength;

    txLength -= header;

    // first upload the header to gain some time
    atomic writeTxFifo(txData, header);

    atomic {
      //call SfdCapture.captureRisingEdge();
      strobe(CC2520_CMD_STXON);
      state = STATE_TX_ON;
      //*((volatile uint32_t * )0x40010054) |= (1 << 16);
      call SfdCapture.captureRisingEdge();
    }

    //#ifdef RADIO_DEBUG_MESSAGES
    txMsg = msg;
    //#endif

    // wait for SFD rising edge.
    return SUCCESS;
  }

  inline void continueTx()
  {
    void* timesync;
    uint32_t time32;
    cc2520_status_t status;


    /*****************************************
     * FIXME: We have to check for underrun here!
     *****************************************/

    // prepare for end of TX on falling SFD
    
    timesync = call PacketTimeSyncOffset.isSet(txMsg) ? ((void*)txMsg) + call PacketTimeSyncOffset.get(txMsg) : 0;

    time32 = capturedTime;

    if( timesync != 0 )
      *(timesync_relative_t*)timesync = (*(timesync_absolute_t*)timesync) - time32;

    // write the rest of the payload to the fifo
    atomic writeTxFifo(txData+header, txLength);

    call SfdCapture.captureFallingEdge();

    if(secMode > 0){
      txData[9] = prevdata9;
      txData[10] = prevdata10;
    }

    // get status
    status = getStatus();
    RADIO_ASSERT ( status.tx_active == 1);
    // FIXME: have to check for underflow exception!
    //RADIO_ASSERT ( status.tx_underflow == 0);
    RADIO_ASSERT ( status.xosc_stable == 1);

    if( timesync != 0 )
      *(timesync_absolute_t*)timesync = (*(timesync_relative_t*)timesync) + time32;

    call PacketTimeStamp.set(txMsg, time32);

#ifdef RADIO_DEBUG_MESSAGES
    if( call DiagMsg.record() ){
      uint16_t t = call RadioAlarm.getNow();
      txLength = getHeader(txMsg)->length;

      call DiagMsg.chr('t');
      call DiagMsg.uint16(time32);
      call DiagMsg.uint16(t);
      call DiagMsg.uint16(t-time32);
      call DiagMsg.uint32(call PacketTimeStamp.isValid(txMsg) ? call PacketTimeStamp.timestamp(txMsg) : 0);
      call DiagMsg.int8(txLength);
      call DiagMsg.hex8s(getPayload(txMsg), txLength - 2);
      if(txLength - 2 > 15) {
        call DiagMsg.hex8s(&(((uint8_t *)getPayload(txMsg))[15]), txLength - 2 - 15);
      }
      if(txIeee154header->fcf & (1 << IEEE154_FCF_ACK_REQ)){
        call DiagMsg.str("w/ ack");
      }

      call DiagMsg.send();
    }
#endif

    // wait for SFD falling edge
    state = STATE_BUSY_TX_2_RX_ON;
    cmd = CMD_TRANSMIT;

    //call SpiResource.release();
    atomic sending = TRUE;
  }

  default tasklet_async event void RadioSend.sendDone(error_t error) { }
  default tasklet_async event void RadioSend.ready() { }

  /*----------------- CCA -----------------*/

  tasklet_async command error_t RadioCCA.request(){
    if( cmd != CMD_NONE || state != STATE_RX_ON )
      return EBUSY;

    if(call CCA.get()) {
      signal RadioCCA.done(SUCCESS);
    } else {
      signal RadioCCA.done(EBUSY);
    }
    return SUCCESS;
  }

  default tasklet_async event void RadioCCA.done(error_t error) { }

  /*----------------- RECEIVE -----------------*/

  // recover from an error
  // rx fifo flush does not always work
  inline void recover() {
    cc2520_status_t status;

    // reset the radio, initialize registers to default values
    RADIO_ASSERT(0);
    resetRadio();

    //call SfdCapture.disable();

    RADIO_ASSERT(state == STATE_PD);

    // start oscillator
    strobe(CC2520_CMD_SXOSCON);

    // going idle in PD_2_IDLE_TIME
    state = STATE_PD_2_IDLE;

    call BusyWait.wait(PD_2_IDLE_TIME); // .86ms OSC startup time

    // get status
    status = getStatus();
    RADIO_ASSERT ( status.rssi_valid == 0);
    //RADIO_ASSERT ( status.lock == 0);
    RADIO_ASSERT ( status.tx_active == 0);
    //RADIO_ASSERT ( status.enc_busy == 0);
    //RADIO_ASSERT ( status.tx_underflow == 0);
    RADIO_ASSERT ( status.xosc_stable == 1);

    // we're idle now
    state = STATE_IDLE;

    // download current channel to the radio
    setChannel();

    // start receiving
    strobe(CC2520_CMD_SRXON);
    state = STATE_IDLE_2_RX_ON;

    //call SfdCapture.captureRisingEdge(); // JK

    // we will be able to receive packets in 12 symbol periods
    state = STATE_RX_ON;
  }

  inline void recover_err() {
    cc2520_status_t status;

    // reset the radio, initialize registers to default values
    RADIO_ASSERT(0);

    resetRadio();
    // start oscillator
    strobe(CC2520_CMD_SXOSCON);

    // going idle in PD_2_IDLE_TIME
    state = STATE_PD_2_IDLE;

    //call BusyWait.wait(PD_2_IDLE_TIME); // .86ms OSC startup time

    // get status
    status = getStatus();
    RADIO_ASSERT ( status.rssi_valid == 0);
    //RADIO_ASSERT ( status.lock == 0);
    RADIO_ASSERT ( status.tx_active == 0);
    //RADIO_ASSERT ( status.enc_busy == 0);
    //RADIO_ASSERT ( status.tx_underflow == 0);
    RADIO_ASSERT ( status.xosc_stable == 1);

    // we're idle now
    state = STATE_IDLE;

    // download current channel to the radio
    setChannel();

    // start receiving
    strobe(CC2520_CMD_SRXON);
    state = STATE_IDLE_2_RX_ON;

    //call SfdCapture.captureRisingEdge(); // JK

    // we will be able to receive packets in 12 symbol periods
    state = STATE_RX_ON;
  }

  inline void endRx(){
    receiving = FALSE;
  }

  inline void downloadMessage(){ // receiving message to buffer!
    uint8_t length, micLength;
    uint16_t crc = 1;
    uint8_t* data;
    uint8_t rssi;
    uint8_t crc_ok_lqi;
    uint32_t sfdTime, decLimit;
    cc2520_status_t status;
    security_header_t* secHdr;
    ieee154_simple_header_t* ieee154header;

    //call Draw.fill(COLOR_WHITE);

    //state = STATE_RX_DOWNLOAD;

    isSpiAcquired();

    atomic sfdTime = capturedTime;

    // data starts after the length field
    data = getPayload(rxMsg);

    // read the length byte
    readLengthFromRxFifo(&length);

#ifdef RADIO_DEBUG_MESSAGES_____
    if( call DiagMsg.record() ){
      call DiagMsg.str("rx");
      call DiagMsg.uint32(call PacketTimeStamp.isValid(rxMsg) ? call PacketTimeStamp.timestamp(rxMsg) : 0);
      call DiagMsg.uint16(sfdTime);
      call DiagMsg.uint16(call RadioAlarm.getNow());
      call DiagMsg.int8(length);
      call DiagMsg.hex8s(getPayload(rxMsg), length - 2);
      call DiagMsg.send();
    }
#endif
    // check for too short lengths
    if (length == 0) {

#ifdef RADIO_DEBUG_MESSAGES
      if( call DiagMsg.record() ){
        call DiagMsg.str("rx 0 length");
        call DiagMsg.send();
      }
#endif
      if(!first_packet){
        atomic recover_err();
        atomic flushRxFifo();
      }

      atomic first_packet = FALSE;

      call CSN.set();

      RADIO_ASSERT( call FIFOP.get() == 0 );
      RADIO_ASSERT( call FIFO.get() == 0 );

      call SpiResource.release();
      call CSN.set();
      endRx();
      return;
    }

    if (length == 1) {
      // skip payload and rssi
      atomic readCrcOkAndLqiFromRxFifo(&crc_ok_lqi);

      RADIO_ASSERT( call FIFOP.get() == 0 );
      RADIO_ASSERT( call FIFO.get() == 0 );

      call SpiResource.release();
      call CSN.set();
      endRx();
      return;
    }

    if (length == 2) {
      // skip payload
      atomic readRssiFromRxFifo(&rssi);
      atomic readCrcOkAndLqiFromRxFifo(&crc_ok_lqi);

      RADIO_ASSERT( call FIFOP.get() == 0 );
      RADIO_ASSERT( call FIFO.get() == 0 );

      call SpiResource.release();
      call CSN.set();
      endRx();
      return;
    }

    // check for too long lengths
    if( length > 127 ) {

#ifdef RADIO_DEBUG_MESSAGES
      if( call DiagMsg.record() ){
        call DiagMsg.str("rx > 127");
        call DiagMsg.send();
      }
#endif
      atomic recover_err();
      atomic flushRxFifo(); // JK

      RADIO_ASSERT( call FIFOP.get() == 0 );
      RADIO_ASSERT( call FIFO.get() == 0 );

      call SpiResource.release();
      call CSN.set();
      endRx();
      return;
    }

    if( length > call RadioPacket.maxPayloadLength() + 2 ){

      while( length-- > 2 ) {
        atomic readPayloadFromRxFifo(data, 1);
      }

      atomic readRssiFromRxFifo(&rssi);
      atomic readCrcOkAndLqiFromRxFifo(&crc_ok_lqi);

#ifdef RADIO_DEBUG_MESSAGES
      if( call DiagMsg.record() ){
        call DiagMsg.str("rx too long");
        call DiagMsg.send();
      }
#endif
      atomic recover_err();
      atomic flushRxFifo();

      RADIO_ASSERT( call FIFOP.get() == 0 );

      call SpiResource.release();
      call CSN.set();
      endRx();
      return;
    }

    // if we're here, length must be correct
    RADIO_ASSERT(length >= 3 && length <= call RadioPacket.maxPayloadLength() + 2);

    getHeader(rxMsg)->length = length;

    // we'll read the FCS/CRC separately
    length -= 2;

    // download the whole payload
    readPayloadFromRxFifo(data, length);

    // the last two bytes are not the fsc, but RSSI(8), CRC_ON(1)+LQI(7)
    readRssiFromRxFifo(&rssi);

    readCrcOkAndLqiFromRxFifo(&crc_ok_lqi);

    ieee154header = (ieee154_simple_header_t*)data;

    // TODO: actually, we can signal that a message was received, without
    // timestamp set

    if (call FIFOP.get() == 1 || call FIFO.get() == 1) {

#ifdef RADIO_DEBUG_MESSAGES
      if( call DiagMsg.record() ){
        call DiagMsg.str("FIFO or FIFOP = 1");
        call DiagMsg.send();
      }
#endif
      atomic recover_err();
      atomic flushRxFifo();

      call SpiResource.release();
      call CSN.set();
      endRx();
      return;
    }

    if( signal RadioReceive.header(rxMsg) ){
      // set RSSI, CRC and LQI only if we're accepting the message
      call PacketRSSI.set(rxMsg, rssi);
      call PacketLinkQuality.set(rxMsg, crc_ok_lqi & 0x7f);
      crc = (crc_ok_lqi > 0x7f) ? 0 : 1;
    }


    if(length == 3 || ieee154header->fcf & (2 << IEEE154_FCF_FRAME_TYPE) ){
      //call Leds.led2Toggle();
      call SpiResource.release();
      call CSN.set();
      rxMsg = signal RadioReceive.receive(rxMsg);
      endRx();
      return;
    }


    // signal only if it has passed the CRC check
    if( crc == 0){
      call PacketTimeStamp.set(rxMsg, sfdTime);

#ifdef RADIO_DEBUG_MESSAGES
      if( call DiagMsg.record() ){
        uint16_t t = call RadioAlarm.getNow();
        call DiagMsg.chr('r');
        //call DiagMsg.uint16(call RadioAlarm.getNow() - (uint16_t)call PacketTimeStamp.timestamp(rxMsg) );
        call DiagMsg.uint16(sfdTime);
        call DiagMsg.uint16(t);
        call DiagMsg.uint16(t-sfdTime);
        call DiagMsg.uint32(call PacketTimeStamp.isValid(rxMsg) ? call PacketTimeStamp.timestamp(rxMsg) : 0);
        call DiagMsg.int8(length);
        call DiagMsg.hex8s(getPayload(rxMsg), length);
        if(length > 15) {
          call DiagMsg.hex8s(&(((uint8_t*)getPayload(rxMsg))[15]), length - 15);
        }
        call DiagMsg.send();
      }
#endif

      // check fcf for security bit in data packets
      if((ieee154header->fcf & (1 << IEEE154_FCF_SECURITY_ENABLED)) && (ieee154header->fcf & (IEEE154_TYPE_DATA << IEEE154_FCF_FRAME_TYPE))  ){ 

        secHdr = (security_header_t*)&data[9];
        memcpy(&decNonce[3], &(secHdr->frameCounter), 4); // readout nonce from tinyos 15.4 security header

        writeMemory(ADDR_KEY, call CC2520Security.getKey(), 16);
        writeMemory(ADDR_NONCE, decNonce, 16);

        MEMCP(HIGH_PRIORITY, 16, ADDR_KEY, ADDR_KEY);
        MEMCP(HIGH_PRIORITY, 16, ADDR_NONCE, ADDR_NONCE); // reverse twice since CC2420 uses the correct ordered nonce

        // TODO: add proper operation for each case

        atomic security_processing = TRUE;

        // perform security options.
        if (secHdr->secLevel == NO_SEC){
          micLength = 0;
        }else if (secHdr->secLevel == CBC_MAC_4){
          micLength = 4;
        }else if (secHdr->secLevel == CBC_MAC_8){
          micLength = 8;
        }else if (secHdr->secLevel == CBC_MAC_16){
          micLength = 16;
        }else if (secHdr->secLevel == CTR_MODE){
          writeMemory(ADDR_DATA, &data[11+sizeof(security_header_t)], length - sizeof(security_header_t) - 11);
          CTR(HIGH_PRIORITY, ADDR_KEY/16, length - sizeof(security_header_t) - 11, ADDR_NONCE/16, ADDR_DATA, 0);
          //mode = CC2420_CTR;
          micLength = 0;
        }else if (secHdr->secLevel == CCM_4){
          micLength = 4;
        }else if (secHdr->secLevel == CCM_8){
          micLength = 8;
        }else if (secHdr->secLevel == CCM_16){
          micLength = 16;
        }else{
          // invalid security
          micLength = 0;
        }

        // Wait for security done interrupt (pp. 49)
        status = getStatus();
        decLimit = 0;

        while(status.dpu_h_active && decLimit++ < 0xFFFF)
	  status = getStatus();
	
	call Leds.led0Toggle();

        // copy data from the memory to msg buffer and delete security header
        data[9] = data[9+sizeof(security_header_t)];
        data[10] = data[10+sizeof(security_header_t)];
        readMemory(ADDR_DATA, &data[11], length - 11 - sizeof(security_header_t));

        atomic security_processing = FALSE;

        length = length - micLength - sizeof(security_header_t); // TODO: not working out too well
        // TODO: If I do this do I lose the RSSI pointers?


        //readMemory(ADDR_DATA, &data[11+sizeof(security_header_t)], length - 11 - sizeof(security_header_t));
        //length -= micLength;
        //memcpy(&data[9], &data[9+sizeof(security_header_t)], 2 + (length - 11 - sizeof(security_header_t)));
        //length -= micLength - sizeof(security_header_t); // modify length w.r.t. mic length

      }

      call SpiResource.release();
      call CSN.set();

      call Leds.led1Toggle();
      rxMsg = signal RadioReceive.receive(rxMsg);
      endRx();

      // ready to receive new message: enable SFD interrupts
      //call SfdCapture.captureRisingEdge(); // JK

    }else{
      call SpiResource.release();
      call CSN.set();
      //state = STATE_RX_ON;
      //cmd = CMD_NONE;

      //call Draw.drawInt(80,140,5,1,COLOR_BLUE);
      endRx();
      // ready to receive new message: enable SFD interrupts
      //call SfdCapture.captureRisingEdge();// JK
    }
  }


  /*----------------- IRQ -----------------*/

  // SFD (rising edge) for timestamps in RX & TX, falling for TX end
  async event void SfdCapture.captured( uint16_t time )  {

    //call SfdCapture.disable(); 
    // if canceling the above takes care of the stopping issue, then
    //the state machine is getting stck at some point inthe disable
    //state

    RADIO_ASSERT( ! radioIrq );
    RADIO_ASSERT( state == STATE_RX_ON || state == STATE_TX_ON || state == STATE_BUSY_TX_2_RX_ON );

#ifdef RADIO_DEBUG_MESSAGES
    if( call DiagMsg.record() ){
      call DiagMsg.str("SFD");
      call DiagMsg.uint16(time);
      call DiagMsg.uint16(call RadioAlarm.getNow());
      call DiagMsg.str("s=");
      call DiagMsg.uint8(state);
      if(call FIFO.get())
        call DiagMsg.str("FIFO");
      if(call FIFOP.get())
        call DiagMsg.str("FIFOP");
      if(call SFD.get())
        call DiagMsg.str("SFD");

      call DiagMsg.send();
    }
#endif

    if(call SFD.get())
    {
      atomic {
        // rising edge, safe time and mutex to 0
        capturedTime = call LocalTime.get();
        // FIXME: there is a small chance that between the SFD and read of
        // LocalTime, the timer overflowed. This wil incurr an error of 65436.
        // We have to check for this overflow! But how?
        if(state == STATE_TX_ON)
        {
          if((uint16_t)(time + TX_SFD_DELAY) > (uint16_t)(capturedTime))
            // we had an overflow between SFD capture and read of LocalTime
            capturedTime -= 1<<16;
          capturedTime += (uint16_t)(time + TX_SFD_DELAY) - (uint16_t)(capturedTime);
        } else {
          if((uint16_t)(time - RX_SFD_DELAY) > (uint16_t)(capturedTime))
            // we had an overflow between SFD capture and read of LocalTime
            capturedTime -= 1<<16;
          capturedTime += (uint16_t)(time - RX_SFD_DELAY) - (uint16_t)(capturedTime);
        }
      }
    }
    radioIrq = TRUE;
    call Tasklet.schedule();
  }

  async event void FifoInterrupt.fired(){
  }

  // FIFOP interrupt, last byte received
  async event void FifopInterrupt.fired(){
    if(receiving == FALSE){
      atomic receiving = TRUE;
      downloadMessage();
    }
  }

  inline void serviceRadio(){
    atomic if( isSpiAcquired() ){
      radioIrq = FALSE;
      switch(state)
      {
        case STATE_TX_ON:
          continueTx();
          break;

        case STATE_BUSY_TX_2_RX_ON:
          state = STATE_RX_ON;
          cmd = CMD_NONE;
          if(sending){
            atomic sending = FALSE;
            call SfdCapture.captureRisingEdge(); // JK release this to enable rx side sfd.
            // do not signal success if the packet requested for an ack
            // In this case call a timer instead and signal success once the timer expires or an ack is received
            call Leds.led2Toggle();

#ifdef RADIO_DEBUG_MESSAGES
	    if( call DiagMsg.record() ){
	      call DiagMsg.str("RadioSend.sendDone");
	      call DiagMsg.send();
	    }
#endif
	    signal RadioSend.sendDone(SUCCESS);


          }

        default:
          RADIO_ASSERT(1);
      }
    }
  }


default tasklet_async event bool RadioReceive.header(message_t* msg){
  return TRUE;
}

default tasklet_async event message_t* RadioReceive.receive(message_t* msg){
  return msg;
}



/*----------------- TASKLET -----------------*/

tasklet_async event void Tasklet.run(){

  if( radioIrq ){
    serviceRadio();
  }

  if( cmd != CMD_NONE ){
    if( cmd == CMD_DOWNLOAD && state == STATE_RX_ON){ // receive state
      //downloadMessage();
    }
    else if( CMD_TURNOFF <= cmd && cmd <= CMD_TURNON )
      changeState();
    else if( cmd == CMD_CHANNEL )
      changeChannel();

    if( cmd == CMD_SIGNAL_DONE ){
      cmd = CMD_NONE;
      signal RadioState.done();
    }
  }

  if( cmd == CMD_NONE && state == STATE_RX_ON && ! radioIrq )
    signal RadioSend.ready();

  if( cmd == CMD_NONE )
    call SpiResource.release();
}

/*----------------- RadioPacket -----------------*/

async command uint8_t RadioPacket.headerLength(message_t* msg){
  return call Config.headerLength(msg) + sizeof(cc2520_header_t);
}

async command uint8_t RadioPacket.payloadLength(message_t* msg){
  return getHeader(msg)->length - 2;
}

async command void RadioPacket.setPayloadLength(message_t* msg, uint8_t length){
  RADIO_ASSERT( 1 <= length && length <= 125 );
  RADIO_ASSERT( call RadioPacket.headerLength(msg) + length + call RadioPacket.metadataLength(msg) <= sizeof(message_t) );

  // we add the length of the CRC, which is automatically generated
  getHeader(msg)->length = length + 2;
}

async command uint8_t RadioPacket.maxPayloadLength(){
  RADIO_ASSERT( call Config.maxPayloadLength() - sizeof(cc2520_header_t) <= 125 );

  return call Config.maxPayloadLength() - sizeof(cc2520_header_t);
}

async command uint8_t RadioPacket.metadataLength(message_t* msg){
  return call Config.metadataLength(msg) + sizeof(cc2520_metadata_t);
}

async command void RadioPacket.clear(message_t* msg){
  // all flags are automatically cleared
}

/*----------------- PacketTransmitPower -----------------*/

async command bool PacketTransmitPower.isSet(message_t* msg){
  return call TransmitPowerFlag.get(msg);
}

async command uint8_t PacketTransmitPower.get(message_t* msg){
  return getMeta(msg)->power;
}

async command void PacketTransmitPower.clear(message_t* msg){
  call TransmitPowerFlag.clear(msg);
}

async command void PacketTransmitPower.set(message_t* msg, uint8_t value){
  call TransmitPowerFlag.set(msg);
  getMeta(msg)->power = value;
}

/*----------------- PacketRSSI -----------------*/

async command bool PacketRSSI.isSet(message_t* msg)
{
  return call RSSIFlag.get(msg);
}

async command uint8_t PacketRSSI.get(message_t* msg)
{
  return getMeta(msg)->rssi;
}

async command void PacketRSSI.clear(message_t* msg)
{
  call RSSIFlag.clear(msg);
}

async command void PacketRSSI.set(message_t* msg, uint8_t value)
{
  // just to be safe if the user fails to clear the packet
  call TransmitPowerFlag.clear(msg);

  call RSSIFlag.set(msg);
  getMeta(msg)->rssi = value;
}

/*----------------- PacketTimeSyncOffset -----------------*/

async command bool PacketTimeSyncOffset.isSet(message_t* msg)
{
  return call TimeSyncFlag.get(msg);
}

async command uint8_t PacketTimeSyncOffset.get(message_t* msg)
{
  return call RadioPacket.headerLength(msg) + call RadioPacket.payloadLength(msg) - sizeof(timesync_absolute_t);
}

async command void PacketTimeSyncOffset.clear(message_t* msg)
{
  call TimeSyncFlag.clear(msg);
}

async command void PacketTimeSyncOffset.set(message_t* msg, uint8_t value)
{
  // we do not store the value, the time sync field is always the last 4 bytes
  RADIO_ASSERT( call PacketTimeSyncOffset.get(msg) == value );

  call TimeSyncFlag.set(msg);
}

/*----------------- PacketLinkQuality -----------------*/

async command bool PacketLinkQuality.isSet(message_t* msg)
{
  return TRUE;
}

async command uint8_t PacketLinkQuality.get(message_t* msg)
{
  return getMeta(msg)->lqi;
}

async command void PacketLinkQuality.clear(message_t* msg)
{
}

async command void PacketLinkQuality.set(message_t* msg, uint8_t value)
{
  getMeta(msg)->lqi = value;
}

ieee154_simple_header_t* getIeeeHeader(message_t* msg)
{
  return (ieee154_simple_header_t*) (void*)msg;//getHeader(msg);//((void*)msg) + call SubPacket.headerLength(msg);
}

async command error_t PacketAcknowledgements.requestAck(message_t* msg)
{
  //call SoftwareAckConfig.setAckRequired(msg, TRUE);
  getIeeeHeader(msg)->fcf |= (1 << IEEE154_FCF_ACK_REQ);

  return SUCCESS;
}

async command error_t PacketAcknowledgements.noAck(message_t* msg)
{
  getIeeeHeader(msg)->fcf &= ~(uint16_t)(1 << IEEE154_FCF_ACK_REQ);
  return SUCCESS;
}

async command bool PacketAcknowledgements.wasAcked(message_t* msg)
{
#ifdef CC2520_HARDWARE_ACK
  return call AckReceivedFlag.get(msg);
#else
  RADIO_ASSERT(1);
  return FALSE;
#endif
}



}