1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
How to hack TinyScheme
----------------------
TinyScheme is easy to learn and modify. It is structured like a
meta-interpreter, only it is written in C. All data are Scheme
objects, which facilitates both understanding/modifying the
code and reifying the interpreter workings.
In place of a dry description, we will pace through the addition
of a useful new datatype: garbage-collected memory blocks.
The interface will be:
(make-block <n> [<fill>]) makes a new block of the specified size
optionally filling it with a specified byte
(block? <obj>)
(block-length <block>)
(block-ref <block> <index>) retrieves byte at location
(block-set! <block> <index> <byte>) modifies byte at location
In the sequel, lines that begin with '>' denote lines to add to the
code. Lines that begin with '|' are just citations of existing code.
First of all, we need to assign a typeid to our new type. Typeids
in TinyScheme are small integers declared in an enum, very close to
the top; it begins with T_STRING. Add a new one at the end, say
T_MEMBLOCK. There can be at most 31 types, but you don't have to
worry about that limit yet.
| ...
| T_PORT,
| T_VECTOR, /* remember to add a comma to the preceding item! */
| T_MEMBLOCK
} };
Then, some helper macros would be useful. Go to where isstring() and
the rest are defined and define:
> int ismemblock(pointer p) { return (type(p)==T_MEMBLOCK); }
This actually is a function, because it is meant to be exported by
scheme.h. If no foreign function will ever manipulate a memory block,
you can instead define it as a macro
> #define ismemblock(p) (type(p)==T_MEMBLOCK)
Then we make space for the new type in the main data structure:
struct cell. As it happens, the _string part of the union _object
(that is used to hold character strings) has two fields that suit us:
| struct {
| char *_svalue;
| int _keynum;
| } _string;
We can use _svalue to hold the actual pointer and _keynum to hold its
length. If we couln't reuse existing fields, we could always add other
alternatives in union _object.
We then procede to write the function that actually makes a new block.
For conformance reasons, we name it mk_memblock
> static pointer mk_memblock(scheme *sc, int len, char fill) {
> pointer x;
> char *p=(char*)sc->malloc(len);
>
> if(p==0) {
> return sc->NIL;
> }
> x = get_cell(sc, sc->NIL, sc->NIL);
>
> typeflag(x) = T_MEMBLOCK|T_ATOM;
> strvalue(x)=p;
> keynum(x)=len;
> memset(p,fill,len);
> return (x);
> }
The memory used by the MEMBLOCK will have to be freed when the cell
is reclaimed during garbage collection. There is a placeholder for
that staff, function finalize_cell(), currently handling strings only.
| static void finalize_cell(scheme *sc, pointer a) {
| if(isstring(a)) {
| sc->free(strvalue(a));
| }
> else if(ismemblock(a)) {
> sc->free(strvalue(x));
> }
| }
There are no MEMBLOCK literals, so we don't concern ourselfs with
the READER part (yet!). We must cater to the PRINTER, though. We
add one case more in printatom().
| } else if (iscontinuation(l)) {
| p = "#<CONTINUATION>";
> } else if (ismemblock(l)) {
> p = "#<MEMORY BLOCK>";
| }
Whenever a MEMBLOCK is displayed, it will look like that.
Now, we must add the interface functions: constructor, predicate,
accessor, modifier. We must in fact create new op-codes for the virtual
machine underlying TinyScheme. There is a huge enum with OP_XXX values.
That's where the op-codes are declared. For reasons of cohesion, we add
the new op-codes right after those for vectors:
| OP_VECSET,
> OP_MKBLOCK,
> OP_MEMBLOCKP,
> OP_BLOCKLEN,
> OP_BLOCKREF,
> OP_BLOCKSET,
| OP_NOT,
We add the predicate along the other predicates:
| OP_VECTORP,
> OP_BLOCKP,
| OP_EQ,
Op-codes are really just tags for a huge C switch, only this switch
is broke up in a number of different opexe_X functions. The
correspondence is made in table "dispatch_table". There, we assign
the new op-codes to opexe_2, where the equivalent ones for vectors
are situated. We also assign a name for them, and specify the minimum
and maximum arity. INF_ARG as a maximum arity means "unlimited".
| {opexe_2, "vector-set!", 3, 3}, /* OP_VECSET */
> {opexe_2, "make-block", 1, 2}, /* OP_MKBLOCK */
> {opexe_2, "block-length", 1, 1}, /* OP_BLOCKLEN */
> {opexe_2, "block-ref", 2, 2}, /* OP_BLOCKREF */
> {opexe_2, "block-set!",3 ,3}, /* OP_BLOCKSET */
The predicate goes with the other predicates, in opexe_3.
| {opexe_3, "vector?", 1, 1}, /* OP_VECTORP, */
> {opexe_3, "block?", 1, 1}, /* OP_BLOCKP, */
All that remains is to write the actual processing in opexe_2, right
after OP_VECSET.
> case OP_MKBLOCK: { /* make-block */
> int fill=0;
> int len;
>
> if(!isnumber(car(sc->args))) {
> Error_1(sc,"make-block: not a number:",car(sc->args));
> }
> len=ivalue(car(sc->args));
> if(len<=0) {
> Error_1(sc,"make-block: not positive:",car(sc->args));
> }
>
> if(cdr(sc->args)!=sc->NIL) {
> if(!isnumber(cadr(sc->args)) || ivalue(cadr(sc->args))<0) {
> Error_1(sc,"make-block: not a positive number:",cadr(sc->args));
> }
> fill=charvalue(cadr(sc->args))%255;
> }
> s_return(sc,mk_memblock(sc,len,(char)fill));
> }
>
> case OP_BLOCKLEN: /* block-length */
> if(!ismemblock(car(sc->args))) {
> Error_1(sc,"block-length: not a memory block:",car(sc->args));
> }
> s_return(sc,mk_integer(sc,keynum(car(sc->args))));
>
> case OP_BLOCKREF: { /* block-ref */
> char *str;
> int index;
>
> if(!ismemblock(car(sc->args))) {
> Error_1(sc,"block-ref: not a memory block:",car(sc->args));
> }
> str=strvalue(car(sc->args));
>
> if(cdr(sc->args)==sc->NIL) {
> Error_0(sc,"block-ref: needs two arguments");
> }
> if(!isnumber(cadr(sc->args))) {
> Error_1(sc,"block-ref: not a number:",cadr(sc->args));
> }
> index=ivalue(cadr(sc->args));
>
> if(index<0 || index>=keynum(car(sc->args))) {
> Error_1(sc,"block-ref: out of bounds:",cadr(sc->args));
> }
>
> s_return(sc,mk_integer(sc,str[index]));
> }
>
> case OP_BLOCKSET: { /* block-set! */
> char *str;
> int index;
> int c;
>
> if(!ismemblock(car(sc->args))) {
> Error_1(sc,"block-set!: not a memory block:",car(sc->args));
> }
> if(isimmutable(car(sc->args))) {
> Error_1(sc,"block-set!: unable to alter immutable memory block:",car(sc->args));
> }
> str=strvalue(car(sc->args));
>
> if(cdr(sc->args)==sc->NIL) {
> Error_0(sc,"block-set!: needs three arguments");
> }
> if(!isnumber(cadr(sc->args))) {
> Error_1(sc,"block-set!: not a number:",cadr(sc->args));
> }
> index=ivalue(cadr(sc->args));
> if(index<0 || index>=keynum(car(sc->args))) {
> Error_1(sc,"block-set!: out of bounds:",cadr(sc->args));
> }
>
> if(cddr(sc->args)==sc->NIL) {
> Error_0(sc,"block-set!: needs three arguments");
> }
> if(!isinteger(caddr(sc->args))) {
> Error_1(sc,"block-set!: not an integer:",caddr(sc->args));
> }
> c=ivalue(caddr(sc->args))%255;
>
> str[index]=(char)c;
> s_return(sc,car(sc->args));
> }
Same for the predicate in opexe_3.
| case OP_VECTORP: /* vector? */
| s_retbool(isvector(car(sc->args)));
> case OP_BLOCKP: /* block? */
> s_retbool(ismemblock(car(sc->args)));
|