File: hack.txt

package info (click to toggle)
tinyscheme 1.37-3
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 288 kB
  • ctags: 686
  • sloc: ansic: 4,454; lisp: 452; makefile: 104
file content (236 lines) | stat: -rw-r--r-- 8,737 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

                              How to hack TinyScheme
                              ----------------------

     TinyScheme is easy to learn and modify. It is structured like a
     meta-interpreter, only it is written in C. All data are Scheme
     objects, which facilitates both understanding/modifying the
     code and reifying the interpreter workings.

     In place of a dry description, we will pace through the addition
     of a useful new datatype: garbage-collected memory blocks.
     The interface will be:

          (make-block <n> [<fill>]) makes a new block of the specified size
               optionally filling it with a specified byte
          (block? <obj>)
          (block-length <block>)
          (block-ref <block> <index>) retrieves byte at location
          (block-set! <block> <index> <byte>) modifies byte at location
     
     In the sequel, lines that begin with '>' denote lines to add to the
     code. Lines that begin with '|' are just citations of existing code.

     First of all, we need to assign a typeid to our new type. Typeids
     in TinyScheme are small integers declared in an enum, very close to
     the top; it begins with T_STRING. Add a new one at the end, say
     T_MEMBLOCK. There can be at most 31 types, but you don't have to
     worry about that limit yet.

|    ...
|      T_PORT,
|      T_VECTOR,          /* remember to add a comma to the preceding item! */
|      T_MEMBLOCK
}     };

     Then, some helper macros would be useful. Go to where isstring() and
     the rest are defined and define:

>    int ismemblock(pointer p)      { return (type(p)==T_MEMBLOCK); }

     This actually is a function, because it is meant to be exported by
     scheme.h. If no foreign function will ever manipulate a memory block,
     you can instead define it as a macro

>     #define ismemblock(p) (type(p)==T_MEMBLOCK)

     Then we make space for the new type in the main data structure:
     struct cell. As it happens, the _string part of the union _object
     (that is used to hold character strings) has two fields that suit us:

|         struct {
|              char   *_svalue;
|              int   _keynum;
|         } _string;

     We can use _svalue to hold the actual pointer and _keynum to hold its
     length. If we couln't reuse existing fields, we could always add other
     alternatives in union _object.

     We then procede to write the function that actually makes a new block.
     For conformance reasons, we name it mk_memblock

>     static pointer mk_memblock(scheme *sc, int len, char fill) {
>          pointer x;
>          char *p=(char*)sc->malloc(len);
>
>          if(p==0) {
>               return sc->NIL;
>          }
>          x = get_cell(sc, sc->NIL, sc->NIL);
>
>          typeflag(x) = T_MEMBLOCK|T_ATOM;
>          strvalue(x)=p;
>          keynum(x)=len;
>          memset(p,fill,len);
>          return (x);
>     }

     The memory used by the MEMBLOCK will have to be freed when the cell
     is reclaimed during garbage collection. There is a placeholder for
     that staff, function finalize_cell(), currently handling strings only.

|     static void finalize_cell(scheme *sc, pointer a) {
|          if(isstring(a)) {
|               sc->free(strvalue(a));
|          }
>          else if(ismemblock(a)) {
>               sc->free(strvalue(x));
>          }
|     }

     There are no MEMBLOCK literals, so we don't concern ourselfs with
     the READER part (yet!). We must cater to the PRINTER, though. We
     add one case more in printatom().

|     } else if (iscontinuation(l)) {
|          p = "#<CONTINUATION>";
>     } else if (ismemblock(l)) {
>          p = "#<MEMORY BLOCK>";
|     }

     Whenever a MEMBLOCK is displayed, it will look like that.
     Now, we must add the interface functions: constructor, predicate,
     accessor, modifier. We must in fact create new op-codes for the virtual
     machine underlying TinyScheme. There is a huge enum with OP_XXX values.
     That's where the op-codes are declared. For reasons of cohesion, we add
     the new op-codes right after those for vectors:

|   OP_VECSET,
>   OP_MKBLOCK,
>   OP_MEMBLOCKP,
>   OP_BLOCKLEN,
>   OP_BLOCKREF,
>   OP_BLOCKSET,
|   OP_NOT,

     We add the predicate along the other predicates:

|   OP_VECTORP,
>   OP_BLOCKP,
|   OP_EQ,

     Op-codes are really just tags for a huge C switch, only this switch
     is broke up in a number of different opexe_X functions. The
     correspondence is made in table "dispatch_table". There, we assign
     the new op-codes to opexe_2, where the equivalent ones for vectors
     are situated. We also assign a name for them, and specify the minimum
     and maximum arity. INF_ARG as a maximum arity means "unlimited".

|     {opexe_2, "vector-set!", 3, 3},    /* OP_VECSET */
>     {opexe_2, "make-block", 1, 2},     /* OP_MKBLOCK */
>     {opexe_2, "block-length", 1, 1},   /* OP_BLOCKLEN */
>     {opexe_2, "block-ref", 2, 2},      /* OP_BLOCKREF */
>     {opexe_2, "block-set!",3 ,3},      /* OP_BLOCKSET */

     The predicate goes with the other predicates, in opexe_3.

|     {opexe_3, "vector?", 1, 1},  /* OP_VECTORP, */
>     {opexe_3, "block?", 1, 1},   /* OP_BLOCKP, */

     All that remains is to write the actual processing in opexe_2, right
     after OP_VECSET.

>     case OP_MKBLOCK: { /* make-block */
>          int fill=0;
>          int len;
>
>          if(!isnumber(car(sc->args))) {
>               Error_1(sc,"make-block: not a number:",car(sc->args));
>          }
>          len=ivalue(car(sc->args));
>          if(len<=0) {
>               Error_1(sc,"make-block: not positive:",car(sc->args));
>          }
>
>          if(cdr(sc->args)!=sc->NIL) {
>               if(!isnumber(cadr(sc->args)) || ivalue(cadr(sc->args))<0) {
>                    Error_1(sc,"make-block: not a positive number:",cadr(sc->args));
>               }
>               fill=charvalue(cadr(sc->args))%255;
>          }
>          s_return(sc,mk_memblock(sc,len,(char)fill));
>     }
>
>     case OP_BLOCKLEN:  /* block-length */
>          if(!ismemblock(car(sc->args))) {
>               Error_1(sc,"block-length: not a memory block:",car(sc->args));
>          }
>          s_return(sc,mk_integer(sc,keynum(car(sc->args))));
>
>     case OP_BLOCKREF: { /* block-ref */
>          char *str;
>          int index;
>
>          if(!ismemblock(car(sc->args))) {
>               Error_1(sc,"block-ref: not a memory block:",car(sc->args));
>          }
>          str=strvalue(car(sc->args));
>
>          if(cdr(sc->args)==sc->NIL) {
>               Error_0(sc,"block-ref: needs two arguments");
>          }
>          if(!isnumber(cadr(sc->args))) {
>               Error_1(sc,"block-ref: not a number:",cadr(sc->args));
>          }
>          index=ivalue(cadr(sc->args));
>
>          if(index<0 || index>=keynum(car(sc->args))) {
>               Error_1(sc,"block-ref: out of bounds:",cadr(sc->args));
>          }
>
>          s_return(sc,mk_integer(sc,str[index]));
>     }
>
>     case OP_BLOCKSET: { /* block-set! */
>          char *str;
>          int index;
>          int c;
>
>          if(!ismemblock(car(sc->args))) {
>               Error_1(sc,"block-set!: not a memory block:",car(sc->args));
>          }
>          if(isimmutable(car(sc->args))) {
>               Error_1(sc,"block-set!: unable to alter immutable memory block:",car(sc->args));
>          }
>          str=strvalue(car(sc->args));
>
>          if(cdr(sc->args)==sc->NIL) {
>               Error_0(sc,"block-set!: needs three arguments");
>          }
>          if(!isnumber(cadr(sc->args))) {
>               Error_1(sc,"block-set!: not a number:",cadr(sc->args));
>          }
>          index=ivalue(cadr(sc->args));
>          if(index<0 || index>=keynum(car(sc->args))) {
>               Error_1(sc,"block-set!: out of bounds:",cadr(sc->args));
>          }
>
>          if(cddr(sc->args)==sc->NIL) {
>               Error_0(sc,"block-set!: needs three arguments");
>          }
>          if(!isinteger(caddr(sc->args))) {
>               Error_1(sc,"block-set!: not an integer:",caddr(sc->args));
>          }
>          c=ivalue(caddr(sc->args))%255;
>
>          str[index]=(char)c;
>          s_return(sc,car(sc->args));
>     }

     Same for the predicate in opexe_3.

|     case OP_VECTORP:     /* vector? */
|          s_retbool(isvector(car(sc->args)));
>     case OP_BLOCKP:     /* block? */
>          s_retbool(ismemblock(car(sc->args)));