1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
|
#include <stdlib.h>
#include <mapbox/geometry/point.hpp>
#include <mapbox/geometry/multi_polygon.hpp>
#include <mapbox/geometry/wagyu/wagyu.hpp>
#include <limits.h>
#include "geometry.hpp"
#include "errors.hpp"
#include "compression.hpp"
#include "mvt.hpp"
#include "evaluator.hpp"
#include "serial.hpp"
#include "attribute.hpp"
static std::vector<std::pair<double, double>> clip_poly1(std::vector<std::pair<double, double>> &geom,
long long minx, long long miny, long long maxx, long long maxy,
long long ax, long long ay, long long bx, long long by, drawvec &edge_nodes,
bool prevent_simplify_shared_nodes);
drawvec simple_clip_poly(drawvec &geom, long long minx, long long miny, long long maxx, long long maxy,
long long ax, long long ay, long long bx, long long by, drawvec &edge_nodes, bool prevent_simplify_shared_nodes) {
drawvec out;
if (prevent_simplify_shared_nodes) {
geom = remove_noop(geom, VT_POLYGON, 0);
}
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
std::vector<std::pair<double, double>> tmp;
for (size_t k = i; k < j; k++) {
double x = geom[k].x;
double y = geom[k].y;
tmp.emplace_back(x, y);
}
tmp = clip_poly1(tmp, minx, miny, maxx, maxy, ax, ay, bx, by, edge_nodes, prevent_simplify_shared_nodes);
if (tmp.size() > 0) {
if (tmp[0].first != tmp[tmp.size() - 1].first || tmp[0].second != tmp[tmp.size() - 1].second) {
fprintf(stderr, "Internal error: Polygon ring not closed\n");
exit(EXIT_FAILURE);
}
}
for (size_t k = 0; k < tmp.size(); k++) {
if (k == 0) {
out.push_back(draw(VT_MOVETO, std::round(tmp[k].first), std::round(tmp[k].second)));
} else {
out.push_back(draw(VT_LINETO, std::round(tmp[k].first), std::round(tmp[k].second)));
}
}
i = j - 1;
} else {
fprintf(stderr, "Unexpected operation in polygon %d\n", (int) geom[i].op);
exit(EXIT_IMPOSSIBLE);
}
}
return out;
}
drawvec simple_clip_poly(drawvec &geom, long long minx, long long miny, long long maxx, long long maxy, bool prevent_simplify_shared_nodes) {
drawvec dv;
return simple_clip_poly(geom, minx, miny, maxx, maxy, minx, miny, maxx, maxy, dv, prevent_simplify_shared_nodes);
}
drawvec simple_clip_poly(drawvec &geom, int z, int buffer, drawvec &edge_nodes, bool prevent_simplify_shared_nodes) {
long long area = 1LL << (32 - z);
long long clip_buffer = buffer * area / 256;
return simple_clip_poly(geom, -clip_buffer, -clip_buffer, area + clip_buffer, area + clip_buffer,
0, 0, area, area, edge_nodes, prevent_simplify_shared_nodes);
}
drawvec clip_point(drawvec &geom, int z, long long buffer) {
long long min = 0;
long long area = 1LL << (32 - z);
min -= buffer * area / 256;
area += buffer * area / 256;
return clip_point(geom, min, min, area, area);
}
drawvec clip_point(drawvec &geom, long long minx, long long miny, long long maxx, long long maxy) {
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].x >= minx && geom[i].y >= miny && geom[i].x <= maxx && geom[i].y <= maxy) {
out.push_back(geom[i]);
}
}
return out;
}
drawvec clip_lines(drawvec &geom, int z, long long buffer) {
long long min = 0;
long long area = 1LL << (32 - z);
min -= buffer * area / 256;
area += buffer * area / 256;
return clip_lines(geom, min, min, area, area);
}
drawvec clip_lines(drawvec &geom, long long minx, long long miny, long long maxx, long long maxy) {
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
if (i > 0 && (geom[i - 1].op == VT_MOVETO || geom[i - 1].op == VT_LINETO) && geom[i].op == VT_LINETO) {
long long x1 = geom[i - 1].x;
long long y1 = geom[i - 1].y;
long long x2 = geom[i - 0].x;
long long y2 = geom[i - 0].y;
int c = clip(&x1, &y1, &x2, &y2, minx, miny, maxx, maxy);
if (c > 1) { // clipped
out.push_back(draw(VT_MOVETO, x1, y1));
out.push_back(draw(VT_LINETO, x2, y2));
out.push_back(draw(VT_MOVETO, geom[i].x, geom[i].y));
} else if (c == 1) { // unchanged
out.push_back(geom[i]);
} else { // clipped away entirely
out.push_back(draw(VT_MOVETO, geom[i].x, geom[i].y));
}
} else {
out.push_back(geom[i]);
}
}
return out;
}
#define INSIDE 0
#define LEFT 1
#define RIGHT 2
#define BOTTOM 4
#define TOP 8
static int computeOutCode(long long x, long long y, long long xmin, long long ymin, long long xmax, long long ymax) {
int code = INSIDE;
if (x < xmin) {
code |= LEFT;
} else if (x > xmax) {
code |= RIGHT;
}
if (y < ymin) {
code |= BOTTOM;
} else if (y > ymax) {
code |= TOP;
}
return code;
}
int clip(long long *x0, long long *y0, long long *x1, long long *y1, long long xmin, long long ymin, long long xmax, long long ymax) {
int outcode0 = computeOutCode(*x0, *y0, xmin, ymin, xmax, ymax);
int outcode1 = computeOutCode(*x1, *y1, xmin, ymin, xmax, ymax);
int accept = 0;
int changed = 0;
while (1) {
if (!(outcode0 | outcode1)) { // Bitwise OR is 0. Trivially accept and get out of loop
accept = 1;
break;
} else if (outcode0 & outcode1) { // Bitwise AND is not 0. Trivially reject and get out of loop
break;
} else {
// failed both tests, so calculate the line segment to clip
// from an outside point to an intersection with clip edge
long long x = *x0, y = *y0;
// At least one endpoint is outside the clip rectangle; pick it.
int outcodeOut = outcode0 ? outcode0 : outcode1;
// XXX truncating division
// Now find the intersection point;
// use formulas y = y0 + slope * (x - x0), x = x0 + (1 / slope) * (y - y0)
if (outcodeOut & TOP) { // point is above the clip rectangle
x = *x0 + (*x1 - *x0) * (ymax - *y0) / (*y1 - *y0);
y = ymax;
} else if (outcodeOut & BOTTOM) { // point is below the clip rectangle
x = *x0 + (*x1 - *x0) * (ymin - *y0) / (*y1 - *y0);
y = ymin;
} else if (outcodeOut & RIGHT) { // point is to the right of clip rectangle
y = *y0 + (*y1 - *y0) * (xmax - *x0) / (*x1 - *x0);
x = xmax;
} else if (outcodeOut & LEFT) { // point is to the left of clip rectangle
y = *y0 + (*y1 - *y0) * (xmin - *x0) / (*x1 - *x0);
x = xmin;
}
// Now we move outside point to intersection point to clip
// and get ready for next pass.
if (outcodeOut == outcode0) {
*x0 = x;
*y0 = y;
outcode0 = computeOutCode(*x0, *y0, xmin, ymin, xmax, ymax);
changed = 1;
} else {
*x1 = x;
*y1 = y;
outcode1 = computeOutCode(*x1, *y1, xmin, ymin, xmax, ymax);
changed = 1;
}
}
}
if (accept == 0) {
return 0;
} else {
return changed + 1;
}
}
static void decode_clipped(mapbox::geometry::multi_polygon<long long> &t, drawvec &out, double scale) {
out.clear();
for (size_t i = 0; i < t.size(); i++) {
for (size_t j = 0; j < t[i].size(); j++) {
drawvec ring;
for (size_t k = 0; k < t[i][j].size(); k++) {
ring.push_back(draw((k == 0) ? VT_MOVETO : VT_LINETO, std::round(t[i][j][k].x / scale), std::round(t[i][j][k].y / scale)));
}
if (ring.size() > 0 && ring[ring.size() - 1] != ring[0]) {
fprintf(stderr, "Had to close ring\n");
ring.push_back(draw(VT_LINETO, ring[0].x, ring[0].y));
}
double area = get_area(ring, 0, ring.size());
if ((j == 0 && area < 0) || (j != 0 && area > 0)) {
fprintf(stderr, "Ring area has wrong sign: %f for %zu\n", area, j);
exit(EXIT_IMPOSSIBLE);
}
for (size_t k = 0; k < ring.size(); k++) {
out.push_back(ring[k]);
}
}
}
}
drawvec clean_or_clip_poly(drawvec &geom, int z, int buffer, bool clip, bool try_scaling) {
geom = remove_noop(geom, VT_POLYGON, 0);
mapbox::geometry::multi_polygon<long long> result;
double scale = 16.0;
if (!try_scaling) {
scale = 1.0;
}
bool again = true;
while (again) {
mapbox::geometry::wagyu::wagyu<long long> wagyu;
again = false;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
if (j >= i + 4) {
mapbox::geometry::linear_ring<long long> lr;
for (size_t k = i; k < j; k++) {
lr.push_back(mapbox::geometry::point<long long>(geom[k].x * scale, geom[k].y * scale));
}
if (lr.size() >= 3) {
wagyu.add_ring(lr);
}
}
i = j - 1;
}
}
if (clip) {
long long area = 0xFFFFFFFF;
if (z != 0) {
area = 1LL << (32 - z);
}
long long clip_buffer = buffer * area / 256;
mapbox::geometry::linear_ring<long long> lr;
lr.push_back(mapbox::geometry::point<long long>(scale * -clip_buffer, scale * -clip_buffer));
lr.push_back(mapbox::geometry::point<long long>(scale * -clip_buffer, scale * (area + clip_buffer)));
lr.push_back(mapbox::geometry::point<long long>(scale * (area + clip_buffer), scale * (area + clip_buffer)));
lr.push_back(mapbox::geometry::point<long long>(scale * (area + clip_buffer), scale * -clip_buffer));
lr.push_back(mapbox::geometry::point<long long>(scale * -clip_buffer, scale * -clip_buffer));
wagyu.add_ring(lr, mapbox::geometry::wagyu::polygon_type_clip);
}
try {
result.clear();
wagyu.execute(mapbox::geometry::wagyu::clip_type_union, result, mapbox::geometry::wagyu::fill_type_positive, mapbox::geometry::wagyu::fill_type_positive);
} catch (std::runtime_error &e) {
FILE *f = fopen("/tmp/wagyu.log", "w");
fprintf(f, "%s\n", e.what());
fprintf(stderr, "%s\n", e.what());
fprintf(f, "[");
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
if (j >= i + 4) {
mapbox::geometry::linear_ring<long long> lr;
if (i != 0) {
fprintf(f, ",");
}
fprintf(f, "[");
for (size_t k = i; k < j; k++) {
lr.push_back(mapbox::geometry::point<long long>(geom[k].x, geom[k].y));
if (k != i) {
fprintf(f, ",");
}
fprintf(f, "[%lld,%lld]", geom[k].x, geom[k].y);
}
fprintf(f, "]");
if (lr.size() >= 3) {
}
}
i = j - 1;
}
}
fprintf(f, "]");
fprintf(f, "\n\n\n\n\n");
fclose(f);
fprintf(stderr, "Internal error: Polygon cleaning failed. Log in /tmp/wagyu.log\n");
exit(EXIT_IMPOSSIBLE);
}
if (scale != 1) {
for (auto const &outer : result) {
for (auto const &ring : outer) {
for (auto const &p : ring) {
if (p.x / scale != std::round(p.x / scale) ||
p.y / scale != std::round(p.y / scale)) {
scale = 1;
again = true;
break;
}
}
}
}
}
}
drawvec ret;
decode_clipped(result, ret, scale);
return ret;
}
void to_tile_scale(drawvec &geom, int z, int detail) {
if (32 - detail - z < 0) {
for (size_t i = 0; i < geom.size(); i++) {
geom[i].x = std::round((double) geom[i].x * (1LL << (-(32 - detail - z))));
geom[i].y = std::round((double) geom[i].y * (1LL << (-(32 - detail - z))));
}
} else {
for (size_t i = 0; i < geom.size(); i++) {
geom[i].x = std::round((double) geom[i].x / (1LL << (32 - detail - z)));
geom[i].y = std::round((double) geom[i].y / (1LL << (32 - detail - z)));
}
}
}
drawvec from_tile_scale(drawvec const &geom, int z, int detail) {
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
draw d = geom[i];
d.x *= (1LL << (32 - detail - z));
d.y *= (1LL << (32 - detail - z));
out.push_back(d);
}
return out;
}
drawvec remove_noop(drawvec geom, int type, int shift) {
// first pass: remove empty linetos
long long ox = 0, oy = 0;
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
long long nx = std::round((double) geom[i].x / (1LL << shift));
long long ny = std::round((double) geom[i].y / (1LL << shift));
if (geom[i].op == VT_LINETO && nx == ox && ny == oy) {
continue;
}
if (geom[i].op == VT_CLOSEPATH) {
out.push_back(geom[i]);
} else { /* moveto or lineto */
out.push_back(geom[i]);
ox = nx;
oy = ny;
}
}
// second pass: remove unused movetos
if (type != VT_POINT) {
geom = out;
out.resize(0);
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
if (i + 1 >= geom.size()) {
// followed by end-of-geometry: not needed
continue;
}
if (geom[i + 1].op == VT_MOVETO) {
// followed by another moveto: not needed
continue;
}
if (geom[i + 1].op == VT_CLOSEPATH) {
// followed by closepath: not possible
fprintf(stderr, "Shouldn't happen\n");
i++; // also remove unused closepath
continue;
}
}
out.push_back(geom[i]);
}
}
// second pass: remove empty movetos
if (type == VT_LINE) {
geom = out;
out.resize(0);
for (size_t i = 0; i < geom.size(); i++) {
if (i > 1 && geom[i].op == VT_MOVETO) {
if (geom[i - 1].op == VT_LINETO &&
std::round((double) geom[i - 1].x / (1LL << shift)) == std::round((double) geom[i].x / (1LL << shift)) &&
std::round((double) geom[i - 1].y / (1LL << shift)) == std::round((double) geom[i].y / (1LL << shift))) {
continue;
}
}
out.push_back(geom[i]);
}
}
return out;
}
double get_area_scaled(const drawvec &geom, size_t i, size_t j) {
const double max_exact_double = (double) ((1LL << 53) - 1);
// keep scaling the geometry down until we can calculate its area without overflow
for (long long scale = 2; scale < (1LL << 30); scale *= 2) {
long long bx = geom[i].x;
long long by = geom[i].y;
bool again = false;
// https://en.wikipedia.org/wiki/Shoelace_formula
double area = 0;
for (size_t k = i; k < j; k++) {
area += (double) ((geom[k].x - bx) / scale) * (double) ((geom[i + ((k - i + 1) % (j - i))].y - by) / scale);
if (std::fabs(area) >= max_exact_double) {
again = true;
break;
}
area -= (double) ((geom[k].y - by) / scale) * (double) ((geom[i + ((k - i + 1) % (j - i))].x - bx) / scale);
if (std::fabs(area) >= max_exact_double) {
again = true;
break;
}
}
if (again) {
continue;
} else {
area /= 2;
return area * scale * scale;
}
}
fprintf(stderr, "get_area_scaled: can't happen\n");
exit(EXIT_IMPOSSIBLE);
}
double get_area(const drawvec &geom, size_t i, size_t j) {
const double max_exact_double = (double) ((1LL << 53) - 1);
// Coordinates in `geom` are 40-bit integers, so there is no good way
// to multiply them without possible precision loss. Since they probably
// do not use the full precision, shift them nearer to the origin so
// their product is more likely to be exactly representable as a double.
//
// (In practice they are actually 34-bit integers: 32 bits for the
// Mercator world plane, plus another two bits so features can stick
// off either the left or right side. But that is still too many bits
// for the product to fit either in a 64-bit long long or in a
// double where the largest exact integer is 2^53.)
//
// If the intermediate calculation still exceeds 2^53, start trying to
// recalculate the area by scaling down the geometry. This will not
// produce as precise an area, but it will still be close, and the
// sign will be correct, which is more important, since the sign
// determines the winding order of the rings. We can then use that
// sign with this generally more precise area calculation.
long long bx = geom[i].x;
long long by = geom[i].y;
// https://en.wikipedia.org/wiki/Shoelace_formula
double area = 0;
bool overflow = false;
for (size_t k = i; k < j; k++) {
area += (double) (geom[k].x - bx) * (double) (geom[i + ((k - i + 1) % (j - i))].y - by);
if (std::fabs(area) >= max_exact_double) {
overflow = true;
}
area -= (double) (geom[k].y - by) * (double) (geom[i + ((k - i + 1) % (j - i))].x - bx);
if (std::fabs(area) >= max_exact_double) {
overflow = true;
}
}
area /= 2;
if (overflow) {
double scaled_area = get_area_scaled(geom, i, j);
if ((area < 0 && scaled_area > 0) || (area > 0 && scaled_area < 0)) {
area = -area;
}
}
return area;
}
double get_mp_area(drawvec &geom) {
double ret = 0;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
ret += get_area(geom, i, j);
i = j - 1;
}
}
return ret;
}
drawvec close_poly(drawvec &geom) {
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
if (j - 1 > i) {
if (geom[j - 1].x != geom[i].x || geom[j - 1].y != geom[i].y) {
fprintf(stderr, "Internal error: polygon not closed\n");
}
}
for (size_t n = i; n < j - 1; n++) {
out.push_back(geom[n]);
}
out.push_back(draw(VT_CLOSEPATH, 0, 0));
i = j - 1;
}
}
return out;
}
static bool inside(std::pair<double, double> d, int edge, long long minx, long long miny, long long maxx, long long maxy) {
switch (edge) {
case 0: // top
return d.second > miny;
case 1: // right
return d.first < maxx;
case 2: // bottom
return d.second < maxy;
case 3: // left
return d.first > minx;
}
fprintf(stderr, "internal error inside\n");
exit(EXIT_FAILURE);
}
static std::pair<double, double> intersect(std::pair<double, double> a, std::pair<double, double> b, int edge, long long minx, long long miny, long long maxx, long long maxy) {
switch (edge) {
case 0: // top
return std::pair<double, double>((a.first + (double) (b.first - a.first) * (miny - a.second) / (b.second - a.second)), miny);
case 1: // right
return std::pair<double, double>(maxx, (a.second + (double) (b.second - a.second) * (maxx - a.first) / (b.first - a.first)));
case 2: // bottom
return std::pair<double, double>((a.first + (double) (b.first - a.first) * (maxy - a.second) / (b.second - a.second)), maxy);
case 3: // left
return std::pair<double, double>(minx, (a.second + (double) (b.second - a.second) * (minx - a.first) / (b.first - a.first)));
}
fprintf(stderr, "internal error intersecting\n");
exit(EXIT_FAILURE);
}
// http://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman_algorithm
static std::vector<std::pair<double, double>> clip_poly1(std::vector<std::pair<double, double>> &geom,
long long minx, long long miny, long long maxx, long long maxy,
long long ax, long long ay, long long bx, long long by, drawvec &edge_nodes,
bool prevent_simplify_shared_nodes) {
std::vector<std::pair<double, double>> out = geom;
for (int edge = 0; edge < 4; edge++) {
if (out.size() > 0) {
std::vector<std::pair<double, double>> in = out;
out.resize(0);
std::pair<double, double> S = in[in.size() - 1];
for (size_t e = 0; e < in.size(); e++) {
std::pair<double, double> E = in[e];
if (!inside(S, edge, minx, miny, maxx, maxy)) {
// was outside the buffer
if (!inside(E, edge, minx, miny, maxx, maxy)) {
// still outside the buffer
} else if (!inside(E, edge, ax, ay, bx, by)) {
// outside the tile but inside the buffer
out.push_back(intersect(S, E, edge, minx, miny, maxx, maxy)); // on buffer edge
out.push_back(E);
} else {
out.push_back(intersect(S, E, edge, minx, miny, maxx, maxy)); // on buffer edge
if (prevent_simplify_shared_nodes) {
out.push_back(intersect(S, E, edge, ax, ay, bx, by)); // on tile boundary
edge_nodes.push_back(draw(VT_MOVETO, std::round(out.back().first), std::round(out.back().second)));
}
out.push_back(E);
}
} else if (!inside(S, edge, ax, ay, bx, by)) {
// was inside the buffer but outside the tile edge
if (!inside(E, edge, minx, miny, maxx, maxy)) {
// now outside the buffer
out.push_back(intersect(S, E, edge, minx, miny, maxx, maxy)); // on buffer edge
} else if (!inside(E, edge, ax, ay, bx, by)) {
// still outside the tile edge but inside the buffer
out.push_back(E);
} else {
// now inside the tile
if (prevent_simplify_shared_nodes) {
out.push_back(intersect(S, E, edge, ax, ay, bx, by)); // on tile boundary
edge_nodes.push_back(draw(VT_MOVETO, std::round(out.back().first), std::round(out.back().second)));
}
out.push_back(E);
}
} else {
// was inside the tile
if (!inside(E, edge, minx, miny, maxx, maxy)) {
// now outside the buffer
if (prevent_simplify_shared_nodes) {
out.push_back(intersect(S, E, edge, ax, ay, bx, by)); // on tile boundary
edge_nodes.push_back(draw(VT_MOVETO, std::round(out.back().first), std::round(out.back().second)));
}
out.push_back(intersect(S, E, edge, minx, miny, maxx, maxy)); // on buffer edge
} else if (!inside(E, edge, ax, ay, bx, by)) {
// now inside the buffer but outside the tile edge
if (prevent_simplify_shared_nodes) {
out.push_back(intersect(S, E, edge, ax, ay, bx, by)); // on tile boundary
edge_nodes.push_back(draw(VT_MOVETO, std::round(out.back().first), std::round(out.back().second)));
}
out.push_back(E);
} else {
// still inside the tile
out.push_back(E);
}
}
S = E;
}
}
}
if (out.size() > 0) {
// If the polygon begins and ends outside the edge,
// the starting and ending points will be left as the
// places where it intersects the edge. Need to add
// another point to close the loop.
if (out[0].first != out[out.size() - 1].first || out[0].second != out[out.size() - 1].second) {
out.push_back(out[0]);
}
if (out.size() < 3) {
// fprintf(stderr, "Polygon degenerated to a line segment\n");
out.clear();
return out;
}
}
return out;
}
std::string overzoom(const std::string &s, int oz, int ox, int oy, int nz, int nx, int ny,
int detail, int buffer, std::set<std::string> const &keep, bool do_compress,
std::vector<std::pair<unsigned, unsigned>> *next_overzoomed_tiles,
bool demultiply, json_object *filter, bool preserve_input_order, std::unordered_map<std::string, attribute_op> const &attribute_accum, std::vector<std::string> const &unidecode_data) {
mvt_tile tile;
try {
bool was_compressed;
if (!tile.decode(s, was_compressed)) {
fprintf(stderr, "Couldn't parse tile %d/%u/%u\n", oz, ox, oy);
exit(EXIT_MVT);
}
} catch (std::exception const &e) {
fprintf(stderr, "PBF decoding error in tile %d/%u/%u\n", oz, ox, oy);
exit(EXIT_PROTOBUF);
}
return overzoom(tile, oz, ox, oy, nz, nx, ny, detail, buffer, keep, do_compress, next_overzoomed_tiles, demultiply, filter, preserve_input_order, attribute_accum, unidecode_data);
}
struct tile_feature {
drawvec geom;
int t;
bool has_id;
unsigned long long id;
std::vector<unsigned> tags;
mvt_layer const *layer;
size_t seq = 0;
};
static void feature_out(std::vector<tile_feature> const &features, mvt_layer &outlayer, std::set<std::string> const &keep, std::unordered_map<std::string, attribute_op> const &attribute_accum, std::shared_ptr<std::string> const &tile_stringpool) {
// Add geometry to output feature
mvt_feature outfeature;
outfeature.type = features[0].t;
for (auto const &g : features[0].geom) {
outfeature.geometry.emplace_back(g.op, g.x, g.y);
}
// ID and attributes, if it didn't get clipped away
if (outfeature.geometry.size() > 0) {
if (features[0].has_id) {
outfeature.has_id = true;
outfeature.id = features[0].id;
}
outfeature.seq = features[0].seq;
if (attribute_accum.size() > 0) {
// convert the attributes of the output feature
// from mvt_value to serial_val so they can have
// attributes from the other features of the
// multiplier cluster accumulated onto them
std::unordered_map<std::string, accum_state> attribute_accum_state;
std::vector<std::string> full_keys;
std::vector<serial_val> full_values;
for (size_t i = 0; i + 1 < features[0].tags.size(); i += 2) {
auto f = attribute_accum.find(features[0].layer->keys[features[0].tags[i]]);
if (f != attribute_accum.end()) {
// this attribute has an accumulator, so convert it
full_keys.push_back(features[0].layer->keys[features[0].tags[i]]);
full_values.push_back(mvt_value_to_serial_val(features[0].layer->values[features[0].tags[i + 1]]));
} else {
// otherwise just tag it directly onto the output feature
if (keep.size() == 0 || keep.find(features[0].layer->keys[features[0].tags[i]]) != keep.end()) {
outlayer.tag(outfeature, features[0].layer->keys[features[0].tags[i]], features[0].layer->values[features[0].tags[i + 1]]);
}
}
}
// accumulate whatever attributes are specified to be accumulated
// onto the feature that will survive into the output, from the
// features that will not
for (size_t i = 1; i < features.size(); i++) {
for (size_t j = 0; j + 1 < features[i].tags.size(); j += 2) {
std::string key = features[i].layer->keys[features[i].tags[j]];
auto f = attribute_accum.find(key);
if (f != attribute_accum.end()) {
serial_val val = mvt_value_to_serial_val(features[i].layer->values[features[i].tags[j + 1]]);
preserve_attribute(f->second, key, val, full_keys, full_values, attribute_accum_state);
}
}
}
// convert the final attributes back to mvt_value
// and tag them onto the output feature
for (size_t i = 0; i < full_keys.size(); i++) {
if (keep.size() == 0 || keep.find(full_keys[i]) != keep.end()) {
outlayer.tag(outfeature, full_keys[i], stringified_to_mvt_value(full_values[i].type, full_values[i].s.c_str(), tile_stringpool));
}
}
} else {
for (size_t i = 0; i + 1 < features[0].tags.size(); i += 2) {
if (keep.size() == 0 || keep.find(features[0].layer->keys[features[0].tags[i]]) != keep.end()) {
outlayer.tag(outfeature, features[0].layer->keys[features[0].tags[i]], features[0].layer->values[features[0].tags[i + 1]]);
}
}
}
outlayer.features.push_back(std::move(outfeature));
}
}
static struct preservecmp {
bool operator()(const mvt_feature &a, const mvt_feature &b) {
return a.seq < b.seq;
}
} preservecmp;
std::string overzoom(const mvt_tile &tile, int oz, int ox, int oy, int nz, int nx, int ny,
int detail, int buffer, std::set<std::string> const &keep, bool do_compress,
std::vector<std::pair<unsigned, unsigned>> *next_overzoomed_tiles,
bool demultiply, json_object *filter, bool preserve_input_order, std::unordered_map<std::string, attribute_op> const &attribute_accum, std::vector<std::string> const &unidecode_data) {
mvt_tile outtile;
std::shared_ptr<std::string> tile_stringpool = std::make_shared<std::string>();
for (auto const &layer : tile.layers) {
mvt_layer outlayer = mvt_layer();
int det = detail;
if (det <= 0) {
det = std::round(log(layer.extent) / log(2));
}
outlayer.name = layer.name;
outlayer.version = layer.version;
outlayer.extent = 1LL << det;
std::vector<tile_feature> pending_tile_features;
static const std::string retain_points_multiplier_first = "tippecanoe:retain_points_multiplier_first";
static const std::string retain_points_multiplier_sequence = "tippecanoe:retain_points_multiplier_sequence";
for (auto feature : layer.features) {
bool flush_multiplier_cluster = false;
if (demultiply) {
for (ssize_t i = feature.tags.size() - 2; i >= 0; i -= 2) {
if (layer.keys[feature.tags[i]] == retain_points_multiplier_first) {
mvt_value v = layer.values[feature.tags[i + 1]];
if (v.type == mvt_bool && v.numeric_value.bool_value) {
flush_multiplier_cluster = true;
feature.tags.erase(feature.tags.begin() + i, feature.tags.begin() + i + 2);
}
} else if (i < (ssize_t) feature.tags.size() && layer.keys[feature.tags[i]] == retain_points_multiplier_sequence) {
mvt_value v = layer.values[feature.tags[i + 1]];
feature.seq = mvt_value_to_long_long(v);
feature.tags.erase(feature.tags.begin() + i, feature.tags.begin() + i + 2);
}
}
} else {
flush_multiplier_cluster = true;
}
if (flush_multiplier_cluster) {
if (pending_tile_features.size() > 0) {
feature_out(pending_tile_features, outlayer, keep, attribute_accum, tile_stringpool);
pending_tile_features.clear();
}
}
std::set<std::string> exclude_attributes;
if (filter != NULL && !evaluate(feature, layer, filter, exclude_attributes, nz, unidecode_data)) {
continue;
}
drawvec geom;
int t = feature.type;
// Convert feature geometry to world coordinates
long long tilesize = 1LL << (32 - oz); // source tile size in world coordinates
draw ring_closure(0, 0, 0);
bool sametile = (nz == oz && nx == ox && ny == oy && outlayer.extent >= layer.extent);
for (auto const &g : feature.geometry) {
if (g.op == mvt_closepath) {
geom.push_back(ring_closure);
} else {
geom.emplace_back(g.op,
g.x * tilesize / layer.extent + ox * tilesize,
g.y * tilesize / layer.extent + oy * tilesize);
if (g.op == mvt_moveto) {
ring_closure = geom.back();
ring_closure.op = mvt_lineto;
}
}
}
// Now offset from world coordinates to output tile coordinates,
// but retain world scale, because that is what tippecanoe clipping expects
long long outtilesize = 1LL << (32 - nz); // destination tile size in world coordinates
for (auto &g : geom) {
g.x -= nx * outtilesize;
g.y -= ny * outtilesize;
}
if (!sametile) {
// Clip to output tile
long long xmin = LLONG_MAX;
long long ymin = LLONG_MAX;
long long xmax = LLONG_MIN;
long long ymax = LLONG_MIN;
for (auto const &g : geom) {
xmin = std::min(xmin, g.x);
ymin = std::min(ymin, g.y);
xmax = std::max(xmax, g.x);
ymax = std::max(ymax, g.y);
}
long long b = outtilesize * buffer / 256;
if (xmax < -b || ymax < -b || xmin > outtilesize + b || ymin > outtilesize + b) {
continue;
}
if (t == VT_LINE) {
geom = clip_lines(geom, nz, buffer);
} else if (t == VT_POLYGON) {
drawvec dv;
geom = simple_clip_poly(geom, nz, buffer, dv, false);
} else if (t == VT_POINT) {
geom = clip_point(geom, nz, buffer);
}
}
// Scale to output tile extent
to_tile_scale(geom, nz, det);
if (!sametile) {
// Clean geometries
geom = remove_noop(geom, t, 0);
if (t == VT_POLYGON) {
geom = clean_or_clip_poly(geom, 0, 0, false, false);
}
}
if (t == VT_POLYGON) {
geom = close_poly(geom);
}
tile_feature tf;
tf.geom = std::move(geom);
tf.t = t;
tf.has_id = feature.has_id;
tf.id = feature.id;
tf.tags = std::move(feature.tags);
tf.layer = &layer;
tf.seq = feature.seq;
pending_tile_features.push_back(tf);
}
if (pending_tile_features.size() > 0) {
feature_out(pending_tile_features, outlayer, keep, attribute_accum, tile_stringpool);
pending_tile_features.clear();
}
if (preserve_input_order) {
std::stable_sort(outlayer.features.begin(), outlayer.features.end(), preservecmp);
}
if (outlayer.features.size() > 0) {
outtile.layers.push_back(std::move(outlayer));
}
}
if (next_overzoomed_tiles != NULL) {
// will any child tiles have features in them?
// find out recursively from the tile we just made.
//
// (yes, we should keep them instead of remaking them
// later, but that first requires figuring out where to
// keep them.)
if (outtile.layers.size() > 0) {
for (size_t x = 0; x < 2; x++) {
for (size_t y = 0; y < 2; y++) {
std::string child = overzoom(outtile, nz, nx, ny,
nz + 1, nx * 2 + x, ny * 2 + y,
detail, buffer, keep, false, NULL,
demultiply, filter, preserve_input_order, attribute_accum, unidecode_data);
if (child.size() > 0) {
next_overzoomed_tiles->emplace_back(nx * 2 + x, ny * 2 + y);
}
}
}
}
}
if (outtile.layers.size() > 0) {
std::string pbf = outtile.encode();
std::string compressed;
if (do_compress) {
compress(pbf, compressed, true);
} else {
compressed = pbf;
}
return compressed;
} else {
return "";
}
}
|