1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
|
/*
* Smithsonian Astrophysical Observatory, Cambridge, MA, USA
* This code has been modified under the terms listed below and is made
* available under the same terms.
*/
/*
* Copyright 2009 George A Howlett.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <float.h>
#include <stdlib.h>
#include <string.h>
#include <cmath>
#include "tkbltGrElemLine.h"
using namespace Blt;
typedef double TriDiagonalMatrix[3];
typedef struct {
double b, c, d;
} Cubic2D;
typedef struct {
double b, c, d, e, f;
} Quint2D;
// Quadratic spline parameters
#define E1 param[0]
#define E2 param[1]
#define V1 param[2]
#define V2 param[3]
#define W1 param[4]
#define W2 param[5]
#define Z1 param[6]
#define Z2 param[7]
#define Y1 param[8]
#define Y2 param[9]
/*
*---------------------------------------------------------------------------
*
* Search --
*
* Conducts a binary search for a value. This routine is called
* only if key is between x(0) and x(len - 1).
*
* Results:
* Returns the index of the largest value in xtab for which
* x[i] < key.
*
*---------------------------------------------------------------------------
*/
static int Search(Point2d points[], int nPoints, double key, int *foundPtr)
{
int low = 0;
int high = nPoints - 1;
while (high >= low) {
int mid = (high + low) / 2;
if (key > points[mid].x)
low = mid + 1;
else if (key < points[mid].x)
high = mid - 1;
else {
*foundPtr = 1;
return mid;
}
}
*foundPtr = 0;
return low;
}
/*
*---------------------------------------------------------------------------
*
* QuadChoose --
*
* Determines the case needed for the computation of the parame-
* ters of the quadratic spline.
*
* Results:
* Returns a case number (1-4) which controls how the parameters
* of the quadratic spline are evaluated.
*
*---------------------------------------------------------------------------
*/
static int QuadChoose(Point2d* p, Point2d* q, double m1, double m2,
double epsilon)
{
// Calculate the slope of the line joining P and Q
double slope = (q->y - p->y) / (q->x - p->x);
if (slope != 0.0) {
double prod1 = slope * m1;
double prod2 = slope * m2;
// Find the absolute values of the slopes slope, m1, and m2
double mref = fabs(slope);
double mref1 = fabs(m1);
double mref2 = fabs(m2);
// If the relative deviation of m1 or m2 from slope is less than
// epsilon, then choose case 2 or case 3.
double relerr = epsilon * mref;
if ((fabs(slope - m1) > relerr) && (fabs(slope - m2) > relerr) &&
(prod1 >= 0.0) && (prod2 >= 0.0)) {
double prod = (mref - mref1) * (mref - mref2);
if (prod < 0.0) {
// l1, the line through (x1,y1) with slope m1, and l2,
// the line through (x2,y2) with slope m2, intersect
// at a point whose abscissa is between x1 and x2.
// The abscissa becomes a knot of the spline.
return 1;
}
if (mref1 > (mref * 2.0)) {
if (mref2 <= ((2.0 - epsilon) * mref))
return 3;
}
else if (mref2 <= (mref * 2.0)) {
// Both l1 and l2 cross the line through
// (x1+x2)/2.0,y1 and (x1+x2)/2.0,y2, which is the
// midline of the rectangle formed by P and Q or both
// m1 and m2 have signs different than the sign of
// slope, or one of m1 and m2 has opposite sign from
// slope and l1 and l2 intersect to the left of x1 or
// to the right of x2. The point (x1+x2)/2. is a knot
// of the spline.
return 2;
}
else if (mref1 <= ((2.0 - epsilon) * mref)) {
// In cases 3 and 4, sign(m1)=sign(m2)=sign(slope).
// Either l1 or l2 crosses the midline, but not both.
// Choose case 4 if mref1 is greater than
// (2.-epsilon)*mref; otherwise, choose case 3.
return 3;
}
// If neither l1 nor l2 crosses the midline, the spline
// requires two knots between x1 and x2.
return 4;
}
else {
// The sign of at least one of the slopes m1 or m2 does not
// agree with the sign of *slope*.
if ((prod1 < 0.0) && (prod2 < 0.0)) {
return 2;
}
else if (prod1 < 0.0) {
if (mref2 > ((epsilon + 1.0) * mref))
return 1;
else
return 2;
}
else if (mref1 > ((epsilon + 1.0) * mref))
return 1;
else
return 2;
}
}
else if ((m1 * m2) >= 0.0)
return 2;
else
return 1;
}
/*
*---------------------------------------------------------------------------
* Computes the knots and other parameters of the spline on the
* interval PQ.
* On input--
* P and Q are the coordinates of the points of interpolation.
* m1 is the slope at P.
* m2 is the slope at Q.
* ncase controls the number and location of the knots.
* On output--
*
* (v1,v2),(w1,w2),(z1,z2), and (e1,e2) are the coordinates of
* the knots and other parameters of the spline on P.
* (e1,e2) and Q are used only if ncase=4.
*---------------------------------------------------------------------------
*/
static void QuadCases(Point2d* p, Point2d* q, double m1, double m2,
double param[], int which)
{
if ((which == 3) || (which == 4)) {
double c1 = p->x + (q->y - p->y) / m1;
double d1 = q->x + (p->y - q->y) / m2;
double h1 = c1 * 2.0 - p->x;
double j1 = d1 * 2.0 - q->x;
double mbar1 = (q->y - p->y) / (h1 - p->x);
double mbar2 = (p->y - q->y) / (j1 - q->x);
if (which == 4) {
// Case 4
Y1 = (p->x + c1) / 2.0;
V1 = (p->x + Y1) / 2.0;
V2 = m1 * (V1 - p->x) + p->y;
Z1 = (d1 + q->x) / 2.0;
W1 = (q->x + Z1) / 2.0;
W2 = m2 * (W1 - q->x) + q->y;
double mbar3 = (W2 - V2) / (W1 - V1);
Y2 = mbar3 * (Y1 - V1) + V2;
Z2 = mbar3 * (Z1 - V1) + V2;
E1 = (Y1 + Z1) / 2.0;
E2 = mbar3 * (E1 - V1) + V2;
}
else {
// Case 3
double k1 = (p->y - q->y + q->x * mbar2 - p->x * mbar1) / (mbar2 - mbar1);
if (fabs(m1) > fabs(m2)) {
Z1 = (k1 + p->x) / 2.0;
} else {
Z1 = (k1 + q->x) / 2.0;
}
V1 = (p->x + Z1) / 2.0;
V2 = p->y + m1 * (V1 - p->x);
W1 = (q->x + Z1) / 2.0;
W2 = q->y + m2 * (W1 - q->x);
Z2 = V2 + (W2 - V2) / (W1 - V1) * (Z1 - V1);
}
}
else if (which == 2) {
// Case 2
Z1 = (p->x + q->x) / 2.0;
V1 = (p->x + Z1) / 2.0;
V2 = p->y + m1 * (V1 - p->x);
W1 = (Z1 + q->x) / 2.0;
W2 = q->y + m2 * (W1 - q->x);
Z2 = (V2 + W2) / 2.0;
}
else {
// Case 1
Z1 = (p->y - q->y + m2 * q->x - m1 * p->x) / (m2 - m1);
double ztwo = p->y + m1 * (Z1 - p->x);
V1 = (p->x + Z1) / 2.0;
V2 = (p->y + ztwo) / 2.0;
W1 = (Z1 + q->x) / 2.0;
W2 = (ztwo + q->y) / 2.0;
Z2 = V2 + (W2 - V2) / (W1 - V1) * (Z1 - V1);
}
}
static int QuadSelect(Point2d* p, Point2d* q, double m1, double m2,
double epsilon, double param[])
{
int ncase = QuadChoose(p, q, m1, m2, epsilon);
QuadCases(p, q, m1, m2, param, ncase);
return ncase;
}
static double QuadGetImage(double p1, double p2, double p3, double x1,
double x2, double x3)
{
double A = x1 - x2;
double B = x2 - x3;
double C = x1 - x3;
double y = (p1 * (A * A) + p2 * 2.0 * B * A + p3 * (B * B)) / (C * C);
return y;
}
/*
*---------------------------------------------------------------------------
* Finds the image of a point in x.
* On input
* x Contains the value at which the spline is evaluated.
* leftX, leftY
* Coordinates of the left-hand data point used in the
* evaluation of x values.
* rightX, rightY
* Coordinates of the right-hand data point used in the
* evaluation of x values.
* Z1, Z2, Y1, Y2, E2, W2, V2
* Parameters of the spline.
* ncase Controls the evaluation of the spline by indicating
* whether one or two knots were placed in the interval
* (xtabs,xtabs1).
*---------------------------------------------------------------------------
*/
static void QuadSpline(Point2d* intp, Point2d* left, Point2d* right,
double param[], int ncase)
{
double y;
if (ncase == 4) {
// Case 4: More than one knot was placed in the interval.
// Determine the location of data point relative to the 1st knot.
if (Y1 > intp->x)
y = QuadGetImage(left->y, V2, Y2, Y1, intp->x, left->x);
else if (Y1 < intp->x) {
// Determine the location of the data point relative to the 2nd knot.
if (Z1 > intp->x)
y = QuadGetImage(Y2, E2, Z2, Z1, intp->x, Y1);
else if (Z1 < intp->x)
y = QuadGetImage(Z2, W2, right->y, right->x, intp->x, Z1);
else
y = Z2;
}
else
y = Y2;
}
else {
// Cases 1, 2, or 3:
// Determine the location of the data point relative to the knot.
if (Z1 < intp->x)
y = QuadGetImage(Z2, W2, right->y, right->x, intp->x, Z1);
else if (Z1 > intp->x)
y = QuadGetImage(left->y, V2, Z2, Z1, intp->x, left->x);
else
y = Z2;
}
intp->y = y;
}
/*
*---------------------------------------------------------------------------
* Calculates the derivative at each of the data points. The
* slopes computed will insure that an osculatory quadratic
* spline will have one additional knot between two adjacent
* points of interpolation. Convexity and monotonicity are
* preserved wherever these conditions are compatible with the
* data.
*---------------------------------------------------------------------------
*/
static void QuadSlopes(Point2d *points, double *m, int nPoints)
{
double m1s =0;
double m2s =0;
double m1 =0;
double m2 =0;
int i, n, l;
for (l = 0, i = 1, n = 2; i < (nPoints - 1); l++, i++, n++) {
// Calculate the slopes of the two lines joining three
// consecutive data points.
double ydif1 = points[i].y - points[l].y;
double ydif2 = points[n].y - points[i].y;
m1 = ydif1 / (points[i].x - points[l].x);
m2 = ydif2 / (points[n].x - points[i].x);
if (i == 1) {
// Save slopes of starting point
m1s = m1;
m2s = m2;
}
// If one of the preceding slopes is zero or if they have opposite
// sign, assign the value zero to the derivative at the middle point.
if ((m1 == 0.0) || (m2 == 0.0) || ((m1 * m2) <= 0.0))
m[i] = 0.0;
else if (fabs(m1) > fabs(m2)) {
// Calculate the slope by extending the line with slope m1.
double xbar = ydif2 / m1 + points[i].x;
double xhat = (xbar + points[n].x) / 2.0;
m[i] = ydif2 / (xhat - points[i].x);
}
else {
// Calculate the slope by extending the line with slope m2.
double xbar = -ydif1 / m2 + points[i].x;
double xhat = (points[l].x + xbar) / 2.0;
m[i] = ydif1 / (points[i].x - xhat);
}
}
// Calculate the slope at the last point, x(n).
i = nPoints - 2;
n = nPoints - 1;
if ((m1 * m2) < 0.0)
m[n] = m2 * 2.0;
else {
double xmid = (points[i].x + points[n].x) / 2.0;
double yxmid = m[i] * (xmid - points[i].x) + points[i].y;
m[n] = (points[n].y - yxmid) / (points[n].x - xmid);
if ((m[n] * m2) < 0.0)
m[n] = 0.0;
}
// Calculate the slope at the first point, x(0).
if ((m1s * m2s) < 0.0)
m[0] = m1s * 2.0;
else {
double xmid = (points[0].x + points[1].x) / 2.0;
double yxmid = m[1] * (xmid - points[1].x) + points[1].y;
m[0] = (yxmid - points[0].y) / (xmid - points[0].x);
if ((m[0] * m1s) < 0.0)
m[0] = 0.0;
}
}
/*
*---------------------------------------------------------------------------
*
* QuadEval --
*
* QuadEval controls the evaluation of an osculatory quadratic
* spline. The user may provide his own slopes at the points of
* interpolation or use the subroutine 'QuadSlopes' to calculate
* slopes which are consistent with the shape of the data.
*
* ON INPUT--
* intpPts must be a nondecreasing vector of points at which the
* spline will be evaluated.
* origPts contains the abscissas of the data points to be
* interpolated. xtab must be increasing.
* y contains the ordinates of the data points to be
* interpolated.
* m contains the slope of the spline at each point of
* interpolation.
* nPoints number of data points (dimension of xtab and y).
* numEval is the number of points of evaluation (dimension of
* xval and yval).
* epsilon is a relative error tolerance used in subroutine
* 'QuadChoose' to distinguish the situation m(i) or
* m(i+1) is relatively close to the slope or twice
* the slope of the linear segment between xtab(i) and
* xtab(i+1). If this situation occurs, roundoff may
* cause a change in convexity or monotonicity of the
* resulting spline and a change in the case number
* provided by 'QuadChoose'. If epsilon is not equal to zero,
* then epsilon should be greater than or equal to machine
* epsilon.
* ON OUTPUT--
* yval contains the images of the points in xval.
* err is one of the following error codes:
* 0 - QuadEval ran normally.
* 1 - xval(i) is less than xtab(1) for at least one
* i or xval(i) is greater than xtab(num) for at
* least one i. QuadEval will extrapolate to provide
* function values for these abscissas.
* 2 - xval(i+1) < xval(i) for some i.
*
*
* QuadEval calls the following subroutines or functions:
* Search
* QuadCases
* QuadChoose
* QuadSpline
*---------------------------------------------------------------------------
*/
static int QuadEval(Point2d origPts[], int nOrigPts, Point2d intpPts[],
int nIntpPts, double *m, double epsilon)
{
double param[10];
// Initialize indices and set error result
int error = 0;
int l = nOrigPts - 1;
int p = l - 1;
int ncase = 1;
// Determine if abscissas of new vector are non-decreasing.
for (int jj=1; jj<nIntpPts; jj++) {
if (intpPts[jj].x < intpPts[jj - 1].x)
return 2;
}
// Determine if any of the points in xval are LESS than the
// abscissa of the first data point.
int start;
for (start = 0; start < nIntpPts; start++) {
if (intpPts[start].x >= origPts[0].x)
break;
}
// Determine if any of the points in xval are GREATER than the
// abscissa of the l data point.
int end;
for (end = nIntpPts - 1; end >= 0; end--) {
if (intpPts[end].x <= origPts[l].x)
break;
}
if (start > 0) {
// Set error value to indicate that extrapolation has occurred
error = 1;
// Calculate the images of points of evaluation whose abscissas
// are less than the abscissa of the first data point.
ncase = QuadSelect(origPts, origPts + 1, m[0], m[1], epsilon, param);
for (int jj=0; jj<(start - 1); jj++)
QuadSpline(intpPts + jj, origPts, origPts + 1, param, ncase);
if (nIntpPts == 1)
return error;
}
int ii;
int nn;
if ((nIntpPts == 1) && (end != (nIntpPts - 1)))
goto noExtrapolation;
// Search locates the interval in which the first in-range
// point of evaluation lies.
int found;
ii = Search(origPts, nOrigPts, intpPts[start].x, &found);
nn = ii + 1;
if (nn >= nOrigPts) {
nn = nOrigPts - 1;
ii = nOrigPts - 2;
}
/*
* If the first in-range point of evaluation is equal to one
* of the data points, assign the appropriate value from y.
* Continue until a point of evaluation is found which is not
* equal to a data point.
*/
if (found) {
do {
intpPts[start].y = origPts[ii].y;
start++;
if (start >= nIntpPts) {
return error;
}
} while (intpPts[start - 1].x == intpPts[start].x);
for (;;) {
if (intpPts[start].x < origPts[nn].x) {
break; /* Break out of for-loop */
}
if (intpPts[start].x == origPts[nn].x) {
do {
intpPts[start].y = origPts[nn].y;
start++;
if (start >= nIntpPts) {
return error;
}
} while (intpPts[start].x == intpPts[start - 1].x);
}
ii++;
nn++;
}
}
/*
* Calculate the images of all the points which lie within
* range of the data.
*/
if ((ii > 0) || (error != 1))
ncase = QuadSelect(origPts+ii, origPts+nn, m[ii], m[nn], epsilon, param);
for (int jj=start; jj<=end; jj++) {
// If xx(j) - x(n) is negative, do not recalculate
// the parameters for this section of the spline since
// they are already known.
if (intpPts[jj].x == origPts[nn].x) {
intpPts[jj].y = origPts[nn].y;
continue;
}
else if (intpPts[jj].x > origPts[nn].x) {
double delta;
// Determine that the routine is in the correct part of the spline
do {
ii++;
nn++;
delta = intpPts[jj].x - origPts[nn].x;
} while (delta > 0.0);
if (delta < 0.0)
ncase = QuadSelect(origPts+ii, origPts+nn, m[ii], m[nn],
epsilon, param);
else if (delta == 0.0) {
intpPts[jj].y = origPts[nn].y;
continue;
}
}
QuadSpline(intpPts+jj, origPts+ii, origPts+nn, param, ncase);
}
if (end == (nIntpPts - 1))
return error;
if ((nn == l) && (intpPts[end].x != origPts[l].x))
goto noExtrapolation;
// Set error value to indicate that extrapolation has occurred
error = 1;
ncase = QuadSelect(origPts + p, origPts + l, m[p], m[l], epsilon, param);
noExtrapolation:
// Calculate the images of the points of evaluation whose
// abscissas are greater than the abscissa of the last data point.
for (int jj=(end + 1); jj<nIntpPts; jj++)
QuadSpline(intpPts + jj, origPts + p, origPts + l, param, ncase);
return error;
}
/*
*---------------------------------------------------------------------------
*
* Shape preserving quadratic splines
* by D.F.Mcallister & J.A.Roulier
* Coded by S.L.Dodd & M.Roulier
* N.C.State University
*
*---------------------------------------------------------------------------
*/
/*
* Driver routine for quadratic spline package
* On input--
* X,Y Contain n-long arrays of data (x is increasing)
* XM Contains m-long array of x values (increasing)
* eps Relative error tolerance
* n Number of input data points
* m Number of output data points
* On output--
* work Contains the value of the first derivative at each data point
* ym Contains the interpolated spline value at each data point
*/
int LineElement::quadraticSpline(Point2d *origPts, int nOrigPts,
Point2d *intpPts, int nIntpPts)
{
double* work = new double[nOrigPts];
double epsilon = 0.0;
/* allocate space for vectors used in calculation */
QuadSlopes(origPts, work, nOrigPts);
int result = QuadEval(origPts, nOrigPts, intpPts, nIntpPts, work, epsilon);
delete [] work;
if (result > 1) {
return 0;
}
return 1;
}
/*
*---------------------------------------------------------------------------
* Reference:
* Numerical Analysis, R. Burden, J. Faires and A. Reynolds.
* Prindle, Weber & Schmidt 1981 pp 112
*---------------------------------------------------------------------------
*/
int LineElement::naturalSpline(Point2d *origPts, int nOrigPts,
Point2d *intpPts, int nIntpPts)
{
Point2d *ip, *iend;
double x, dy, alpha;
int isKnot;
int i, j, n;
double* dx = new double[nOrigPts];
/* Calculate vector of differences */
for (i = 0, j = 1; j < nOrigPts; i++, j++) {
dx[i] = origPts[j].x - origPts[i].x;
if (dx[i] < 0.0) {
return 0;
}
}
n = nOrigPts - 1; /* Number of intervals. */
TriDiagonalMatrix* A = new TriDiagonalMatrix[nOrigPts];
if (!A) {
delete [] dx;
return 0;
}
/* Vectors to solve the tridiagonal matrix */
A[0][0] = A[n][0] = 1.0;
A[0][1] = A[n][1] = 0.0;
A[0][2] = A[n][2] = 0.0;
/* Calculate the intermediate results */
for (i = 0, j = 1; j < n; j++, i++) {
alpha = 3.0 * ((origPts[j + 1].y / dx[j]) - (origPts[j].y / dx[i]) -
(origPts[j].y / dx[j]) + (origPts[i].y / dx[i]));
A[j][0] = 2 * (dx[j] + dx[i]) - dx[i] * A[i][1];
A[j][1] = dx[j] / A[j][0];
A[j][2] = (alpha - dx[i] * A[i][2]) / A[j][0];
}
Cubic2D* eq = new Cubic2D[nOrigPts];
if (!eq) {
delete [] A;
delete [] dx;
return 0;
}
eq[0].c = eq[n].c = 0.0;
for (j = n, i = n - 1; i >= 0; i--, j--) {
eq[i].c = A[i][2] - A[i][1] * eq[j].c;
dy = origPts[i+1].y - origPts[i].y;
eq[i].b = (dy) / dx[i] - dx[i] * (eq[j].c + 2.0 * eq[i].c) / 3.0;
eq[i].d = (eq[j].c - eq[i].c) / (3.0 * dx[i]);
}
delete [] A;
delete [] dx;
/* Now calculate the new values */
for (ip = intpPts, iend = ip + nIntpPts; ip < iend; ip++) {
ip->y = 0.0;
x = ip->x;
/* Is it outside the interval? */
if ((x < origPts[0].x) || (x > origPts[n].x)) {
continue;
}
/* Search for the interval containing x in the point array */
i = Search(origPts, nOrigPts, x, &isKnot);
if (isKnot) {
ip->y = origPts[i].y;
} else {
i--;
x -= origPts[i].x;
ip->y = origPts[i].y + x * (eq[i].b + x * (eq[i].c + x * eq[i].d));
}
}
delete [] eq;
return 1;
}
typedef struct {
double t; /* Arc length of interval. */
double x; /* 2nd derivative of X with respect to T */
double y; /* 2nd derivative of Y with respect to T */
} CubicSpline;
/*
* The following two procedures solve the special linear system which arise
* in cubic spline interpolation. If x is assumed cyclic ( x[i]=x[n+i] ) the
* equations can be written as (i=0,1,...,n-1):
* m[i][0] * x[i-1] + m[i][1] * x[i] + m[i][2] * x[i+1] = b[i] .
* In matrix notation one gets A * x = b, where the matrix A is tridiagonal
* with additional elements in the upper right and lower left position:
* A[i][0] = A_{i,i-1} for i=1,2,...,n-1 and m[0][0] = A_{0,n-1} ,
* A[i][1] = A_{i, i } for i=0,1,...,n-1
* A[i][2] = A_{i,i+1} for i=0,1,...,n-2 and m[n-1][2] = A_{n-1,0}.
* A should be symmetric (A[i+1][0] == A[i][2]) and positive definite.
* The size of the system is given in n (n>=1).
*
* In the first procedure the Cholesky decomposition A = C^T * D * C
* (C is upper triangle with unit diagonal, D is diagonal) is calculated.
* Return TRUE if decomposition exist.
*/
static int SolveCubic1(TriDiagonalMatrix A[], int n)
{
int i;
double m_ij, m_n, m_nn, d;
if (n < 1) {
return 0; /* Dimension should be at least 1 */
}
d = A[0][1]; /* D_{0,0} = A_{0,0} */
if (d <= 0.0) {
return 0; /* A (or D) should be positive definite */
}
m_n = A[0][0]; /* A_{0,n-1} */
m_nn = A[n - 1][1]; /* A_{n-1,n-1} */
for (i = 0; i < n - 2; i++) {
m_ij = A[i][2]; /* A_{i,1} */
A[i][2] = m_ij / d; /* C_{i,i+1} */
A[i][0] = m_n / d; /* C_{i,n-1} */
m_nn -= A[i][0] * m_n; /* to get C_{n-1,n-1} */
m_n = -A[i][2] * m_n; /* to get C_{i+1,n-1} */
d = A[i + 1][1] - A[i][2] * m_ij; /* D_{i+1,i+1} */
if (d <= 0.0) {
return 0; /* Elements of D should be positive */
}
A[i + 1][1] = d;
}
if (n >= 2) { /* Complete last column */
m_n += A[n - 2][2]; /* add A_{n-2,n-1} */
A[n - 2][0] = m_n / d; /* C_{n-2,n-1} */
A[n - 1][1] = d = m_nn - A[n - 2][0] * m_n; /* D_{n-1,n-1} */
if (d <= 0.0) {
return 0;
}
}
return 1;
}
/*
* The second procedure solves the linear system, with the Cholesky
* decomposition calculated above (in m[][]) and the right side b given
* in x[]. The solution x overwrites the right side in x[].
*/
static void SolveCubic2(TriDiagonalMatrix A[], CubicSpline spline[],
int nIntervals)
{
int n = nIntervals - 2;
int m = nIntervals - 1;
// Division by transpose of C : b = C^{-T} * b
double x = spline[m].x;
double y = spline[m].y;
for (int ii=0; ii<n; ii++) {
spline[ii + 1].x -= A[ii][2] * spline[ii].x; /* C_{i,i+1} * x(i) */
spline[ii + 1].y -= A[ii][2] * spline[ii].y; /* C_{i,i+1} * x(i) */
x -= A[ii][0] * spline[ii].x; /* C_{i,n-1} * x(i) */
y -= A[ii][0] * spline[ii].y; /* C_{i,n-1} * x(i) */
}
if (n >= 0) {
// C_{n-2,n-1} * x_{n-1}
spline[m].x = x - A[n][0] * spline[n].x;
spline[m].y = y - A[n][0] * spline[n].y;
}
// Division by D: b = D^{-1} * b
for (int ii=0; ii<nIntervals; ii++) {
spline[ii].x /= A[ii][1];
spline[ii].y /= A[ii][1];
}
// Division by C: b = C^{-1} * b
x = spline[m].x;
y = spline[m].y;
if (n >= 0) {
// C_{n-2,n-1} * x_{n-1}
spline[n].x -= A[n][0] * x;
spline[n].y -= A[n][0] * y;
}
for (int ii=(n - 1); ii>=0; ii--) {
// C_{i,i+1} * x_{i+1} + C_{i,n-1} * x_{n-1}
spline[ii].x -= A[ii][2] * spline[ii + 1].x + A[ii][0] * x;
spline[ii].y -= A[ii][2] * spline[ii + 1].y + A[ii][0] * y;
}
}
/*
* Find second derivatives (x''(t_i),y''(t_i)) of cubic spline interpolation
* through list of points (x_i,y_i). The parameter t is calculated as the
* length of the linear stroke. The number of points must be at least 3.
* Note: For CLOSED_CONTOURs the first and last point must be equal.
*/
static CubicSpline* CubicSlopes(Point2d points[], int nPoints,
int isClosed, double unitX, double unitY)
{
CubicSpline *s1, *s2;
int n, i;
double norm, dx, dy;
CubicSpline* spline = new CubicSpline[nPoints];
if (!spline)
return NULL;
TriDiagonalMatrix *A = new TriDiagonalMatrix[nPoints];
if (!A) {
delete [] spline;
return NULL;
}
/*
* Calculate first differences in (dxdt2[i], y[i]) and interval lengths
* in dist[i]:
*/
s1 = spline;
for (i = 0; i < nPoints - 1; i++) {
s1->x = points[i+1].x - points[i].x;
s1->y = points[i+1].y - points[i].y;
/*
* The Norm of a linear stroke is calculated in "normal coordinates"
* and used as interval length:
*/
dx = s1->x / unitX;
dy = s1->y / unitY;
s1->t = sqrt(dx * dx + dy * dy);
s1->x /= s1->t; /* first difference, with unit norm: */
s1->y /= s1->t; /* || (dxdt2[i], y[i]) || = 1 */
s1++;
}
/*
* Setup linear System: Ax = b
*/
n = nPoints - 2; /* Without first and last point */
if (isClosed) {
/* First and last points must be equal for CLOSED_CONTOURs */
spline[nPoints - 1].t = spline[0].t;
spline[nPoints - 1].x = spline[0].x;
spline[nPoints - 1].y = spline[0].y;
n++; /* Add last point (= first point) */
}
s1 = spline, s2 = s1 + 1;
for (i = 0; i < n; i++) {
/* Matrix A, mainly tridiagonal with cyclic second index
("j = j+n mod n")
*/
A[i][0] = s1->t; /* Off-diagonal element A_{i,i-1} */
A[i][1] = 2.0 * (s1->t + s2->t); /* A_{i,i} */
A[i][2] = s2->t; /* Off-diagonal element A_{i,i+1} */
/* Right side b_x and b_y */
s1->x = (s2->x - s1->x) * 6.0;
s1->y = (s2->y - s1->y) * 6.0;
/*
* If the linear stroke shows a cusp of more than 90 degree,
* the right side is reduced to avoid oscillations in the
* spline:
*/
/*
* The Norm of a linear stroke is calculated in "normal coordinates"
* and used as interval length:
*/
dx = s1->x / unitX;
dy = s1->y / unitY;
norm = sqrt(dx * dx + dy * dy) / 8.5;
if (norm > 1.0) {
/* The first derivative will not be continuous */
s1->x /= norm;
s1->y /= norm;
}
s1++, s2++;
}
if (!isClosed) {
/* Third derivative is set to zero at both ends */
A[0][1] += A[0][0]; /* A_{0,0} */
A[0][0] = 0.0; /* A_{0,n-1} */
A[n-1][1] += A[n-1][2]; /* A_{n-1,n-1} */
A[n-1][2] = 0.0; /* A_{n-1,0} */
}
/* Solve linear systems for dxdt2[] and y[] */
if (SolveCubic1(A, n)) { /* Cholesky decomposition */
SolveCubic2(A, spline, n); /* A * dxdt2 = b_x */
}
else { /* Should not happen, but who knows ... */
delete [] A;
delete [] spline;
return NULL;
}
/* Shift all second derivatives one place right and update the ends. */
s2 = spline + n, s1 = s2 - 1;
for (/* empty */; s2 > spline; s2--, s1--) {
s2->x = s1->x;
s2->y = s1->y;
}
if (isClosed) {
spline[0].x = spline[n].x;
spline[0].y = spline[n].y;
} else {
/* Third derivative is 0.0 for the first and last interval. */
spline[0].x = spline[1].x;
spline[0].y = spline[1].y;
spline[n + 1].x = spline[n].x;
spline[n + 1].y = spline[n].y;
}
delete [] A;
return spline;
}
// Calculate interpolated values of the spline function (defined via p_cntr
// and the second derivatives dxdt2[] and dydt2[]). The number of tabulated
// values is n. On an equidistant grid n_intpol values are calculated.
static int CubicEval(Point2d *origPts, int nOrigPts, Point2d *intpPts,
int nIntpPts, CubicSpline *spline)
{
double t, tSkip;
Point2d q;
int count;
/* Sum the lengths of all the segments (intervals). */
double tMax = 0.0;
for (int ii=0; ii<nOrigPts - 1; ii++)
tMax += spline[ii].t;
/* Need a better way of doing this... */
/* The distance between interpolated points */
tSkip = (1. - 1e-7) * tMax / (nIntpPts - 1);
t = 0.0; /* Spline parameter value. */
q = origPts[0];
count = 0;
intpPts[count++] = q; /* First point. */
t += tSkip;
for (int ii=0, jj=1; jj<nOrigPts; ii++, jj++) {
// Interval length
double d = spline[ii].t;
Point2d p = q;
q = origPts[ii+1];
double hx = (q.x - p.x) / d;
double hy = (q.y - p.y) / d;
double dx0 = (spline[jj].x + 2 * spline[ii].x) / 6.0;
double dy0 = (spline[jj].y + 2 * spline[ii].y) / 6.0;
double dx01 = (spline[jj].x - spline[ii].x) / (6.0 * d);
double dy01 = (spline[jj].y - spline[ii].y) / (6.0 * d);
while (t <= spline[ii].t) { /* t in current interval ? */
p.x += t * (hx + (t - d) * (dx0 + t * dx01));
p.y += t * (hy + (t - d) * (dy0 + t * dy01));
intpPts[count++] = p;
t += tSkip;
}
// Parameter t relative to start of next interval
t -= spline[ii].t;
}
return count;
}
int LineElement::naturalParametricSpline(Point2d *origPts, int nOrigPts,
Region2d *extsPtr, int isClosed,
Point2d *intpPts, int nIntpPts)
{
// Generate a cubic spline curve through the points (x_i,y_i) which are
// stored in the linked list p_cntr.
// The spline is defined as a 2d-function s(t) = (x(t),y(t)), where the
// parameter t is the length of the linear stroke.
if (nOrigPts < 3)
return 0;
if (isClosed) {
origPts[nOrigPts].x = origPts[0].x;
origPts[nOrigPts].y = origPts[0].y;
nOrigPts++;
}
// Width and height of the grid is used at unit length (2d-norm)
double unitX = extsPtr->right - extsPtr->left;
double unitY = extsPtr->bottom - extsPtr->top;
if (unitX < FLT_EPSILON)
unitX = FLT_EPSILON;
if (unitY < FLT_EPSILON)
unitY = FLT_EPSILON;
/* Calculate parameters for cubic spline:
* t = arc length of interval.
* dxdt2 = second derivatives of x with respect to t,
* dydt2 = second derivatives of y with respect to t,
*/
CubicSpline* spline = CubicSlopes(origPts, nOrigPts, isClosed, unitX, unitY);
if (spline == NULL)
return 0;
int result= CubicEval(origPts, nOrigPts, intpPts, nIntpPts, spline);
delete [] spline;
return result;
}
static void CatromCoeffs(Point2d* p, Point2d* a, Point2d* b,
Point2d* c, Point2d* d)
{
a->x = -p[0].x + 3.0 * p[1].x - 3.0 * p[2].x + p[3].x;
b->x = 2.0 * p[0].x - 5.0 * p[1].x + 4.0 * p[2].x - p[3].x;
c->x = -p[0].x + p[2].x;
d->x = 2.0 * p[1].x;
a->y = -p[0].y + 3.0 * p[1].y - 3.0 * p[2].y + p[3].y;
b->y = 2.0 * p[0].y - 5.0 * p[1].y + 4.0 * p[2].y - p[3].y;
c->y = -p[0].y + p[2].y;
d->y = 2.0 * p[1].y;
}
int LineElement::catromParametricSpline(Point2d* points, int nPoints,
Point2d* intpPts, int nIntpPts)
{
// The spline is computed in screen coordinates instead of data points so
// that we can select the abscissas of the interpolated points from each
// pixel horizontally across the plotting area.
Point2d* origPts = new Point2d[nPoints + 4];
memcpy(origPts + 1, points, sizeof(Point2d) * nPoints);
origPts[0] = origPts[1];
origPts[nPoints + 2] = origPts[nPoints + 1] = origPts[nPoints];
for (int ii=0; ii<nIntpPts; ii++) {
int interval = (int)intpPts[ii].x;
double t = intpPts[ii].y;
Point2d a, b, c, d;
CatromCoeffs(origPts + interval, &a, &b, &c, &d);
intpPts[ii].x = (d.x + t * (c.x + t * (b.x + t * a.x))) / 2.0;
intpPts[ii].y = (d.y + t * (c.y + t * (b.y + t * a.y))) / 2.0;
}
delete [] origPts;
return 1;
}
|