
 1

File: vendor5readme.pdf
Purpose: 1. To present an overview on how to merge or track vendor (third-

party) software when developing local code. The overview includes an
outline of a detailed example used to show the vendor merge
capablitiy of tkcvs

 2. To define a set of code to be used for the example.
 3. To describe script vendorcode.sh which sets up the source code used
 for the example.
 4. To describe the use of a version of tkcvs subsequent to 7.2 for
 importing the code created in vendorcode.sh.
 5. To describe the use a version of tkcvs subsequent to 7.2 for merging

in vendor or third-party source into the local code.

By: Eugene Lee, Aerospace Corporation, 10/4/95
Revised: EAL 7/6/01 for use with TkCVS 7.0
Revised: EAL 7/11/01 for use with tkcvs_gene
Revised: EAL 1/23/04 for use with a version of tkcvs subsequent to 7.2 (1/3/04)

1. Software development is sometimes based on source distribution from a vendor

or third-party distributor. After building a local version of this
distribution, merging or tracking the vendor’s future release into the local
version of the distribution can be done with tkcvs. The following example
will demonstrate the vendor merge capability of tkcvs.
a. Vendor’s Release 1.0 is imported into CVS as Module 3rdParty with version

number 1.0.
b. A copy of the Vendor’s Release 1.0 was modified with local changes. This

local version is imported into CVS as Module Local-1.0 with version
number 1.0.

c. Vendor’s Release 1.1 is imported into the existing Module 3rdParty with
version number 1.1. (Importing to an existing module is a new operation
subsequent to tkcvs 7.2).

d. From a new directory, Module Local-1.0 is checked out. The differences
between versions 1.0 to 1.1 of Module 3rdParty are merged into the local
code. Local changes are made which will later cause a conflict with the
next release of the Vendor’s code. This version of the local code is
imported into CVS as Module Local-1.1 with version 1.1.

e. Vendor’s Release 2.0 is imported into the existing Module 3rdParty with
version number 2.0.

f. From a new directory, Module Local-1.1 is checked out. The differences
between versions 1.1 to 2.0 of Module 3rdParty are merge into the local
code. The resulting updated local code will include a merge conflict
which the user must resolve. After that is done this version of the local
code is imported into CVS as Module Local-2.0 with version 2.0

Note: Each of the updated local code was imported into the CVS repository as

a separate new module, i.e., Local-1.1 and Local-2.0. This was done
for simplicity. To conserve resources, all the local code could have
been imported into the same module, i.e., Module Local using different
version numbers. The example would have been a little more complex to
describe.

2. To test out the merging or tracking of vendor (third-party) source releases
 using CVS, the following set of pseudo code is presented. This pseudo code
 was used so that a listing of all the routines can be easily shown in this
 document.

 2

############################## 3rdParty Code ##############################
| main | get | sort | getsort #
#___#
Release 1.0 | program Main | proc Get | | #
| Release 1.0 | Release 1.0 | (undefined) | (undefined) #
| . | .. | | #
| .. | .. | | #
| Get | end | | #
| .. | | | #
| end | | | #
#___#
Release 1.1 | program Main | proc Get | proc Sort | #
| Release 1.1 | Release 1.1 | Release 1.1 | (undefined) #
| . | .. | .. | #
| .. | .. | end | #
| Get | (new code) | | #
| .. | end | | #
| Sort | | | #
| Printout | | | #
| end | | | #
#___#
Release 2.0 | program Main | | | proc GetSort #
| Release 2.0 | (deleted) | (deleted) | Release 2.0 #
| . | | | .. #
| .. | | | .. #
| GetSort | | | end #
| Printout | | | #
| end | | | #
############################## 3rdParty Code ##############################

3rdParty Code: In Release 1.0 only program Main and proc Get are defined.

 In Release 1.1 program Main and proc Get are modified and proc
 Sort is added.

 In Release 2.0 proc GetSort is added to replace the functions
 previously provided by procs Get and Sort. Procs Get and Sort
 are deleted. Program Main is modified.

 (Note: All 3rdParty routines are commented with the current
 release numbers.)

 The changes between releases 1.0, 1.1, and 2.0 includes new and
 deleted routines. The purpose of introducing new and deleted
 routines is to show how to handle them when using tkcvs. Also
 there is a change to main in the local code between Release 1.1
 and 2.0. which will create a merge conflict in file main when
 the local code is updated to 3rdParty release 2.0. This will be
 used to show the format CVS uses for delineating code which are
 in conflict after a merge.

########### Local Code Release 1.0 ###########
| main | get #
#__#
Release 1 | program Main | proc Get #
| Release 1.0 | Release 1.0 #
| . | .. #
| . (my code) | .. #
| .. | #
| Get | end #
| .. | #
| end | #
########### Local Code Release 1.0 ###########

 3

Local Code: In Release 1.0, the local code is identical to the 3rdParty
 Code, Release 1.0, except for the “. (my code)” before the Get
 statement.

3. Script vendorcode.sh will create the source code to be used for the example.

To use this script:

 o From a working directory, i.e., ~/tmp_vgen :

 o Copy file vendorcode.sh into the working directory and invoke
 vendorcode.sh.
 o This will create the source code in the following directories
 ~/tmp_vgen/Examples/Local-1.0 <- local code release 1.0
 ~/tmp_vgen/Examples/3rdPartyV1 <- vendor code release 1.0
 ~/tmp_vgen/Examples/3rdPartyV2 <- vendor code release 1.1
 ~/tmp_vgen/Examples/3rdPartyV3 <- vendor code release 2.0

4. Use tkcvs to import the example code into CVS modules

 o If you have never used CVS and wish to create a new test CVS
 for experimenting, do the following:

 o From your home directory
 unsetenv CVSROOT
 cvs -d ~/cvstest init <- creates & initializes CVS repository
 setenv CVSROOT ~/cvstest

 o Use tkcvs to import release 1.0 of the 3rdParty code into a new module

named 3rdParty.
 o cd to ~/tmp_vgen/Examples/3rdPartyV1
 o invoke tkcvs_gene4
 o From the TkCVS file menu, select "Browse Modules"
 o From the Module Browser file menu, select "Import To A New Module"
 o In the "Create a New Module" window, enter the following:
 New Module Name : 3rdParty
 New Module path relative to $CVSROOT : Examples/3rdParty
 Descriptive Title : Vendor code
 Version Number : 1.0 <- same as release no.

 o Press the OK button.
 o The following window will appear which shows that the code in
 directory 3rdPartyV1 was imported into the CVS repository. tkcvs will

then move the original 3rdPartyV1 directory to 3rdPartyV1.orig. Next,
 tkcvs will check out the new module into directory 3rdParty

 4

 o Press the Close button in the Import Module window.
 o From the Module Browser, click on the + Examples directory icon
 to show that module 3rdParty is now in the repository.
 o Exit tkcvs.
 o Note that you are now in directory 3rdPartyV1.orig.

 o Use tkcvs to import in the local code (which has one statement in file

main which is not in the vendor’s original code) into a new module named
Local-1.0.

 o cd to ~/tmp_vgen/Examples/Local-1.0
 o invoke tkcvs
 o From the TkCVS file menu, select "Browse Modules"
 o From the Module Browser file menu, select "Import To A New Module"
 o In the "Create a New Module" window, enter the following:
 New Module Name : Local-1.0
 New Module path relative to $CVSROOT : Examples/Local-1.0
 Descriptive Title : Local code release 1.0
 Version Number : 1.0 <- same as release no.

 5

 o Press the OK button.
 o The following window will appear which shows that the code in
 directory Local-1.0 was imported into the CVS repository. tkcvs will

then move the original Local-1.0 directory to Local-1.0.orig. Next,
 tkcvs will check out the new module into directory Local-1.0 (that is

why the original Local-1.0 directory was moved to directory
 Local-1.0.orig).

 o Press the Close button in the Import Module window.
 o From the Module Browser, click on the + Examples directory icon
 to show that module Local_1.0 is now in the repository.
 o Exit tkcvs.
 o Note that you are now in directory Local-1.0.orig.

 o Use tkcvs to import release 1.1 of the vendor code into existing Module

3rdParty.
 o cd to ~tmp_vgen/Examples and remove directory 3rdParty, i.e.,
 rm –rf 3rdParty
 o cd to ~/tmp_vgen/Examples/3rdPartyV2
 o invoke tkcvs
 o From the TkCVS file menu, select "Browse Modules"
 o From the Module Browser press the + Examples directory icon
 so that Modules Local-1.0 and 3rdParty appears.
 o From the Module Browser file menu, select
 "Import To An Existing Module"

 6

 o Press the "Browse" button which will prompt you to select an existing
 module

 o Select the 3rdParty module and press the OK button.

 o From the "Import To A Existing Module" window input "1.1" for
 the Version Number and then press the OK button.
 o The following window will appear which shows that the code in
 directory 3rdPartyV2 was imported into the CVS repository. tkcvs will

then move the original 3rdPartyV2 directory to 3rdPartyV2.orig. Next,
tkcvs will check out version 1.1 of Module 3rdParty.

 o Press the Close button to close the Import Module window.
 o Exit tkcvs.
 o Note that you are now in directory 3rdPartyV2.orig.

 7

 o Use tkcvs to import release 2.0 of the vendor code into existing Module
3rdParty.

 o cd to ~tmp_vgen/Examples and remove directory 3rdParty, i.e.,
 rm –rf 3rdParty
 o cd to ~/tmp_vgen/Examples/3rdPartyV3
 o invoke tkcvs
 o From the Module Browser press the + Examples directory icon
 so that Modules Local-1.0 and 3rdParty appears.
 o From the Module Browser file menu, select
 "Import To An Existing Module"
 o From the "Import To An Existing Module" window press the
 Browse button, select module 3rdParty and then press the OK
 Button.
 o From "Import To An Existing Module" input 2.0 for the version
 Number and then press the OK Button
 o The following window will appear which shows that the code in
 directory 3rdPartyV3 was imported into the CVS repository. tkcvs will

then move the original 3rdPartyV3 directory to 3rdPartyV3.orig. Next,
tkcvs will check out version 2.0 of Module 3rdParty.

 o Press the Close button to close the Import Module window.
 o Exit tkcvs.
 o Note that you are now in directory 3rdPartyV3.orig.

--
5. Use tkcvs to merge in code from the vendor or third-party into the local
 code.

a. Merge in code from revision 1.0 to 1.1 of Module 3rdParty into local code

from Module-1.0. From an empty working test directory, i.e., ~/TESTCVS, (not
~/cvstest), type:

 setenv CVSROOT ~/cvstest
 tkcvs
 First the code from module Local-1.0 will be checked out.
 o From the TkCVS file menu, select "Browse Modules"
 o From the Module Browser, click on the Examples + icon which
 will then show modules Local-1.0 and 3rdParty.
 o Press module Local-1.0. The Module entry box should show "Local-1.0".
 o Press the "Check out a module from the repository" button located
 4th from the left at the bottom of the window.

 8

 o Press the OK button. Window "Confirm!" will ask "This will check
 out Local-1.0 from CVS. Are you sure?" Press the OK button.
 o Window "CVS Checkout" will be opened. This is the output from CVS when
 checking out a module. After reviewing its content, press the Close
 button.
 o In the TkCVS window refresh the window by pressing on the "Re-read the
 current directory" button (the one with a picture of an eyeglass).
 Directory Local-1.0 will appear with a CVS icon.
 o Double click on the CVS icon which will bring you into directory
 Local-1.0 in your working test directory TESTCVS. Note that each
 of the files are marked as Up-to-date in the status column.

 o Select file main and press the "Edit the selected files" button
 (icon with pencil & paper) to verify that the code matches that shown
 Section 2. Do that for file get also.

 9

 Merge in differences between Release 1.0 and 1.1 of the 3rdParty code
 into the working copy of the Local-1.0 code.
 o Open up the Module Browser and press the + icon on the Examples
 directory
 o Press module Local-1.0. The Module entry box should show "Local-1.0".
 o From the Module Browser file menu, select "Vendor Merge"

 o Press the "Browse" button.
 o From the "Select A Vendor" window, select the 3rdParty module and
 press the OK button.
 o The "Module Level Merge With Vendor Code" window will now show
 (which may take several seconds) the revision tags in the two scroll
 lists.

 Note: Each time a tkcvs import command is invoked, the set of files
 imported is tagged with a tag of the form baseline-xx, where

 10

 xx is of the version number with each "." replaced with "_",
 i.e., 1.0 becomes 1_0

 o From the left scroll list click on "baseline-1_0" so that the
 selection will be placed into the "From" entry box
 o From the right scroll list click on the "baseline-1_1" so that the
 selection will be placed into the "To" entry box.
 o There is an option for saving the output from the CVS merge and rdiff.
 For this exercise leave this selection at “no”.
 o Press the OK button.
 o You will be prompted to verify that you want to merge differences
 between baseline-1_0 and baseline-1_1 of 3rdParty into Local-1.0
 Press the OK button

 o Multiple windows will then appear showing outputs from intermediate
 steps.

 o One will be the CVS output from checking out temp files used by
 tkcvs in preparation for doing the merge. Press the Close button.

 o One will be the CVS output from performing the merge. The title
 of this window shows that module 3rdParty has been merged into
 the checked out copy of module Local-1.0. The contents of this
 window when I ran my copy of the example is:

RCS file: /users/b8/gene/cvstest/Examples/3rdParty/get,v
retrieving revision 1.1.1.1
retrieving revision 1.1.1.2
Merging differences between 1.1.1.1 and 1.1.1.2 into get
M /users/b8/gene/TESTCVS/Local-1.0/main
RCS file: /users/b8/gene/cvstest/Examples/3rdParty/main,v
retrieving revision 1.1.1.1
retrieving revision 1.1.1.2
Merging differences between 1.1.1.1 and 1.1.1.2 into main
U /users/b8/gene/TESTCVS/Local-1.0/sort
cvs checkout: Updating /users/b8/gene/TESTCVS/Local-1.0

 As you can see, files get and main were merged. File sort
 was introduced by the 3rdParty at Release 1.1. It was checked
 out to this working directory as shown by the U in column 1.
 Press the Close button.

 o One will be the CVS output from doing a rdiff. The contents of
 this window is:

File Examples/3rdParty/get changed from revision 1.1.1.1 to 1.1.1.2
File Examples/3rdParty/main changed from revision 1.1.1.1 to 1.1.1.2
File Examples/3rdParty/sort is new; current revision 1.1.1.1
cvs rdiff: Diffing Examples/3rdParty

 Press the Close button.

 o In the TkCVS window, after pressing the "Re-read the current directory"
 button, the status of files get and main are now changed to Locally
 Modified and status of file sort is ?.
 o Select file main and press the "Edit the selected files" button
 to verify that the changes between Release 1.0 and 1.1 of the
 3rdParty code has been correctly merged into the working directory.
 Do that for file get also.
 o Since file sort is new to the working directory its status is
 shown by ? mark.
 o This completes the merge of the code between Release 1.0 and 1.1
 of the 3rdParty code into the checked out copy of the local code

 11

 from module Local-1.0.
o Make a local change in file main so that a merge conflict will occur
later when doing a vendor merge to a later version of the 3rdParty code.

o Either from the edit mode with tkcvs, or outside of tkcvs, edit the line
in file main so that the line

 Sort
 is changed to
 Sort1(my code)

 As stated earlier, this updated local code will not be check back into

an existing local module in the repository. Below, it will be imported
into a new module named Local-1.1. Exit tkcvs.

 Import the local changes to module Local-1.1
 o From the working test directory where the above changes were
 made there should only be a directory named Local-1.0. cd to directory
 Local-1.0 and invoke the ls command. You should see:

 CVS/ get main sort

o Remove the CVS directory with the command, rm -rf CVS. The files in this
directory are no longer under CVS. It is a working directory with the
original Local-1.0 code modified by the merge with 3rdParty code plus a
one line change in file main.

 o Invoke tkcvs. The file scroll list will show files get, main, and sort.
 o From the TkCVS file menu, select "Browse Modules"
 o In the module browser filemenu select “Import To A New Module”.
 o In the "Create a New Module" window enter the following:
 New Module Name : Local-1.1
 New Module path relative to $CVSROOT : Examples/Local-1.1
 Descriptive Title : Local code release 1.1
 Version Number : 1.1

 o Press the OK button.

o The following window will appear which shows that the code in the
 working directory was imported into the CVS repository. tkcvs will
 then move directory ~/CVSTEST/Local-1.0 to ~/CVSTEST/Local-1.0.orig.
 Next, tkcvs will check out the new module into directory Local-1.1.

 12

 o Press the Close button.
 o From the Module Browser, click on the + Examples directory icon
 to verify that module Local_1.1 is now in the repository.
 o Exit tkcvs.

 o Note that you are now in directory Local-1.0.orig. Remember that code
in ~/CVSTEST/Local-1.0.orig is original Local-1.0 code modified by
the merge with 3rdParty code plus a single line change in file main.)

b. Merge in code from revision 1.1 to 2.0 of Module 3rdParty into a working
 copy of the Local-1.1 code. Since module Local-1.1 was checked out
 above in directory ~/TESTCVS/Local-1.1, cd to that directory and type
 tkcvs.

 o Open up the Module Browser and press the + icon in the Examples
 directory.
 o Press module Local-1.1. The Module entry box should show "Local-1.1".
 o From the Module Browser file menu, select "Vendor Merge"
 o The "Module Level Merge With Vendor Code" window will appear.
 o Press the "Browse" button.
 o In the "Select A Vendor" window select module 3rdParty and press
 the OK button.
 o The "Module Level Merge With Vendor Code" window will now show
 the revision tags in the two scroll lists.
 o From the left scroll list click on "baseline-1_1" so that the
 selection will be placed into the "From" entry box.
 o From the right scroll list click on the "baseline-2_0" so that the
 selection will be placed into the "To" entry box.
 o Press the OK button.
 o You will be prompted to verify this is what you want. Press OK.
 o Multiple windows will then appear showing outputs from intermediate
 step.
 o One will be the CVS output from checking out temp files used by
 tkcvs in preparation for doing the merge. Press the Close button.

 13

 o One will be the CVS output from performing the merge. The title
 of this window shows that module 3rdParty has been merged into
 the checked out copy of module Local-1.1. The contents of this
 window when I ran my copy of the example was:

--------- This is what appears but some of the lines are out of order --------
U /users/b8/gene/TESTCVS/Local-1.1/getsort -
M /users/b8/gene/TESTCVS/Local-1.1/main -
RCS file: /users/b8/gene/cvstest/Examples/3rdParty/main,v -
retrieving revision 1.1.1.2 -
retrieving revision 1.1.1.3 -
Merging differences between 1.1.1.2 and 1.1.1.3 into main -
cvs checkout: Updating /users/b8/gene/TESTCVS/Local-1.1 -
cvs checkout: file /users/b8/gene/TESTCVS/Local-1.1/get is locally modified, -
 but has been removed in revision baseline-2_0 -
rcsmerge: warning: conflicts during merge -
cvs checkout: file /users/b8/gene/TESTCVS/Local-1.1/sort is locally modified,-
 but has been removed in revision baseline-2_0 -
--

----- This is what should have appear (when I used CVS from the command ------
 line outside of tkcvs)
cvs checkout: Updating /users/b8/gene/TESTCVS/Local-1.1
cvs checkout: file /users/b8/gene/TESTCVS/Local-1.1/get is locally modified,
 but has been removed in revision baseline-2_0
U /users/b8/gene/TESTCVS/Local-1.1/getsort
M /users/b8/gene/TESTCVS/Local-1.1/main
RCS file: /users/b8/gene/cvstest/Examples/3rdParty/main,v
retrieving revision 1.1.1.2
retrieving revision 1.1.1.3
Merging differences between 1.1.1.2 and 1.1.1.3 into main
rcsmerge: warning: conflicts during merge
cvs checkout: file /users/b8/gene/TESTCVS/Local-1.1/sort is locally modified,
 but has been removed in revision baseline-2_0

(The following explanation will use the output that should have appeared.
 I'll try to find out why the output is out of order later.)

 Files get and sort has been removed in baseline-2_0 (Release 2.0).
 Make notice of this since there will not be any indication of this
 when you return to the TkCVS window. The output from rdiff shown
 next will explicitly show which files have been removed. The U
 associated with file getsort shows that this file was checked out and
 is new to the checked out copy of Local-1.1. File main has been
 merged but there is a warning message that it has conflicts.
 Press the Close button.

 o One will be the CVS output from doing a rdiff. The contents of
 this window is:

File Examples/3rdParty/get is removed; not included in release tag baseline-2_0
File Examples/3rdParty/getsort is new; current revision 1.1.1.1
File Examples/3rdParty/main changed from revision 1.1.1.2 to 1.1.1.3
File Examples/3rdParty/sort is removed; not included in release tag baseline-
2_0
cvs rdiff: Diffing Examples/3rdParty

 Press the Close button.

 o In the TkCVS window, update the window by pressing the “Re-read the
 current directory” button. The status of file get and sort are marked as
 Up-to-date, even though we know that it was removed in the 3rdParty
 code at Release 2.0. It is up to the user to decide if these two

 14

 files should also be removed from the working test directory. The
 file getsort is marked by the ? mark since it is new to the working
 directory. File main, as noted in a previous window, has a merge
 conflict.

 o View the file main by double clicking on "main" or use the "Edit
 the selected files" button. The editor will show:

 program Main
 Release 2.0
 .
 . (my code)
 ..
 <<<<<<< main
 Get
 ...
 Sort1(my code)
 =======
 GetSort
 >>>>>>> 1.1.1.3
 Printout
 end

 What this says is that CVS could not handle the overlaps. The
 overlap is delineated by the lines

 <<<<<<< main

 =======

 >>>>>>> 1.1.1.3

 This file should be edited to yield:
 program Main
 Release 2.0
 .
 . (my code)
 ..
 GetSort
 Printout
 end

o This completes the merge of the code between Release 1.1 and 2.0 of
 Module 3rdParty into the checked out copy of the working code from
 Module Local-1.1. As stated earlier, this updated local code will be not
 be checked back into the existing Module Local-1.1. Below, it will be
 imported into a new module named Local-2.0. Exit tkcvs.

 Import the changes to module Local-2.0
 o From the working test directory where the above changes were
 made there should only be a directory named Local-1.1. cd to
 Local-1.1 and invoke the ls command. You should see:

 CVS/ get getsort main sort

 o Remove the CVS directory with the command, rm -rf CVS. The
 files in this directory are no longer under CVS.
 o Since get and sort is no longer in the 3rdParty Release 2.0
 code and will also not be used in the local code Release 2.0,
 removed them with the command, rm get sort
 o Invoke tkcvs. The file scroll list will show files getsort and main.
 o From the TkCVS file menu, select "Browse Modules"

 15

 o From the Module Browser file menu, select "Import To A New Module"
 o In the "Create a New Module" window enter the following:
 New Module Name : Local-2.0
 New Module path relative to $CVSROOT : Examples/Local-2.0
 Descriptive Title : Local change release 2.0
 Version Number : 2.0
 o Press the OK button. When the "Import Module" window appears
 summarizing the output of the import command, press the Close
 button.
 o From the Module Browser, click on the + Examples directory icon
 to verify that module Local-2.0 is now in the repository.
 o Exit tkcvs.

5. Comments

 o This example is based on a proposed update to tkcvs version 7.2 dated

1/4/04.

 o The proposed changes involves the following changes to the tkcvs source

code version 7.2.

a. Modifications to routine modbrowse.tcl to add selection for “Import To
An Existing Module” and changing selection “Import” to “Import To A New
Module”.

b. A new routine import2.tcl for implementing the function “Import To An
Existing Module. The new code includes a robust Browse window so that
the user cannot input inconsistent data.

c. Modifications to routine import.tcl to allow the user flexibility in
defining the name of the module when importing to a new module. (In
Version 7.2 of tkcvs, the default name was the directory name of the
source code to be imported.)

The method for testing for a duplicate key was changed.
Modified what is written for the #D line when making changes to the CVS
module file.

Since the name of the new module does not necessarily have to be
identical to the name of the directory, the directory to be changed to
after the new module is checked out will not necessarily be $cwd.
Variable chmoddir was defined as the name of the directory to go to
after checking out the new module.

d. Modifications to routine merge.tcl now enables the user to select the
name of the module where merge code is to be from. A robust Browse
window was added so that the user cannot input inconsistent data. Proc
vendor_wait was replaced with proc vendorDialog.

An option was added to so that the output from the CVS merge and rdiff
can be saved to output files. They will be useful when there are many
files in a module. The user can peruse these output files to double
check for new, deleted, and conflicting files.

e. Modification to routine help.tcl to add help on the “Import To An
Existing Module” and “Vendor Merge” operations.

f. Modification to routine workdir.tcl to define calls to help for the
“Import To An Existing Module” and “Vendor Merge” operations.

