File: gateSim.html

package info (click to toggle)
tkgate 2.1%2Brepack-7
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 28,808 kB
  • sloc: ansic: 62,300; tcl: 20,345; xml: 2,731; yacc: 1,177; lex: 839; sh: 701; makefile: 187; perl: 39
file content (1088 lines) | stat: -rw-r--r-- 45,387 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
   <TITLE>TKGate User Documentation (Simulation)</TITLE>
   <link rel="stylesheet" href="../tkgate.css" type="text/css">
</HEAD>
<BODY>

<h2>5. Using the Simulator</h2>  

The TkGate simulator, Verga (VERilog simulator for GAte), is a
discrete time simulator based on Verilog.  All modules, including
those designed graphically, are converted to Verilog for simulation.
Verga is a discrete event simulator.  Time advances in discrete time
units called "epochs".  When simulating, time remains at the current
time step (or epoch) until all work scheduled for the epoch as been
completed.  The simulator will then advance the current simulation to
the next epoch that has work scheduled for it.


<a name="start"></a>
<h3>5.1 Starting the Simulator</h3>

<div class=rfig>
<a name=hdleditor>
<IMG SRC="../fig/simulatetab.gif">
<br>
<b>Figure 5.1: Simulator Mode Tab</b>
</div>
To start the simulator, press the "Simulate" tab at the top of the
main window.  If you have not enabled "auto-start" in the circuit
properties, the simulator will compile your design and wait in paused
mode.  If you have enabled "auto-start", the simulation will begin
immediately.
<p style="clear: right;">

<div class=rfig>
<a name=simmodhier>
<IMG SRC="../fig/simmodhier.gif">
<br>
<b>Figure 5.2: Simulator Mode Module Hierarchy</b>
</div>

The simulation will be performed with the designated root module at
the top-level.  The simulator internally expands any module instances
in your circuit.  While the simulator is active, the Module Hierarchy
View <img src=../fig/modtree.gif> changes to show the hierarchy of module
instances as shown in <a href="#simmodhier">Figure 5.2</a>.  In this
mode, the display shows each instance of each module, rather than
simply one entry per module.  The module name for the instance are
shown in angle brackets after the instance name.  For example, the
instance "RF" under "eunit" is an instance of a "REG16" module.  That
module contains an instance "RF0" of a "ZREG" module, and three
instances "RF1", "RF2" and "RF3" of a "REG4" module.  Double clicking
on an instance in this hierarchy view will move the simulator to that
module, and ensure that any probes or signals viewed are for the
instance you selected.
<p>
While the simulator is active you must navigate using either the
Module Hierarchy <img src=../fig/modtree.gif>, or by right clicking on a
module and using "<img src="../fig/blk_open.gif"> Open" and "<img
src="../fig/blk_close.gif"> Close".  You can not use the Module List <img
src=../fig/modlist.gif> view to navigate since TkGate can not tell which
instance of a module to open.

<br style="clear: right;">

<h4>5.1.1 Simulator Console</h4>

<div class=rfig>
<a href="../fig/simcon_msg.gif"><IMG SRC="../fig/small-simcon_msg.gif"><br>
(Click to Enlarge)</a>
<br><br>
<b>Figure <![figure:hdleditor]>5.2: Simulator Console</b>
</div>

At the bottom of the TkGate main window, is a pull up tab for the
simulator console.  When you start the simulator, the console will
open automatically, but you can view it in edit mode as well by
manually pulling up the tab.
<p>
The simulator console has four tabs with different pages of information.
These four pages are:
<p style="clear: right;">
<table class=display style="padding-right: 50;">
<tr><th width=60 align=left>Page</th><th align=left>Description</th></tr>
<tr><td colspan=2><hr></td></tr>

<tr><td><img src=../fig/log.gif class=tool></td><td>
<b>Message Page</b> - This page displays messages from the
console.  Any output from <tt>$display</tt> or other system tasks
generating output will be displayed here.</td></tr> 

<tr><td><img src=../fig/sim_break.gif class=tool></td><td>
<b>Breakpoint Page</b> - Displays breakpoints that have been set for
the simulation and the status of those breakpoints.</td></tr> 

<tr><td><img src=../fig/sim_script.gif class=tool></td><td>
<b>Script Page</b> - Shows the loaded simulation scripts and their status.</td></tr> 

<tr><td><img src=../fig/simoptions.gif class=tool></td><td>
<b>Simulation Control Page</b> - Allows you to set options controlling
the simulation such as the number of epochs to advance at a time when
stepping through a simulation.  </td></tr>
</table>

<br style="clear: right;">

<h4>5.1.2 Simulator Control</h4>


A set of five buttons controls the advance of time in the simulator.
These buttons are:
<p>


<table class=display style="padding-right: 50;" >
<tr><th align=left width=60>Button</th><th align=left>Description</th></tr>
<tr><td colspan=2><hr></td></tr>

<tr><td><img src="../fig/sim_go.gif" class=tool></td><td>

<b>Run</b> - Enters continuous simulation mode.  The simulation will
continue as long as there are events in the event queue.  If there are
any clock gates in your circuit, this will mean the simulation will
continue indefinitely.  If the circuit is combinational, the
simulation will continue until the circuit reaches quiescence.</td></tr>


<tr><td><img src="../fig/sim_pause.gif" class=tool></td><td>
<b>Pause</b> - Causes a continuously running simulation to stop.</td></tr>

<tr><td><img src="../fig/sim_step.gif" class=tool></td><td>
<b>Step</b> - Causes the simulation to advance a fixed number of epochs.  The number of
epochs to advance can be set on the simulation options menu.  You can also
invoke this command with the space-bar.</td></tr>


<tr><td><img src="../fig/sim_clock.gif" class=tool></td><td>
<b>Clock Step</b> - Causes the simulation to advance to the rising edge of a clock.
You can set the number of clock cycles to simulate and the number of
epochs past the designated cycle to step (to allow time for registers
to change value).  The default is to trigger on any clock, but you can
designate a specific clock in the simulator options menu.
You can also invoke this command with the tab key.</td></tr>

<tr><td><img src="../fig/sim_stop.gif" class=tool></td><td>
<b>Stop</b> - Causes the simulation to be terminated and all probes to be deleted.</td></tr>

</table>

<div class=rfig>
<a name=simcont>
<a href="../fig/simcon_opts.gif"><IMG SRC="../fig/small-simcon_opts.gif"><br>
(Click to Enlarge)</a><br><br>
<b>Figure 5.3: Simulator Console Control Page</b>
</div>

You can use the control page of the simulator console shown in <a
href="#simcont">Figure 5.3</a> to control the effects of the step <img
src="../fig/sim_step.gif" class=tool> and clock step <img
src="../fig/sim_clock.gif" class=tool> buttons.  Enter the number of
epochs to advance for each press of <img src="../fig/sim_step.gif"
class=tool> (or space-bar) into the "Epoch Step Size" box.  The clock
step button <img src="../fig/sim_clock.gif" class=tool> (or tab) will
advance by the number of clock steps indicated in "Clock Cycle Step
Size", plus an additional number of epochs entered in the "Clock
Overstep" entry.



<a name="output"></a>
<a name="verilog"></a>
<h3 style="clear: right; ">5.2 Observing the Output</h3>

Except when otherwise noted, Verilog syntax is used to specify and
display values.  A Verilog syntax number contains a prefix to specify
the bit width, a quote character, a radix character and the digits of
the number.  The radix characters using in TkGate are "b" for binary,
"h" for hexadecimal, "o" for octal and "d" for decimal.  For example
"8'h3e" is the 8-bit hexadecimal number "3e".

<h4>5.2.1 Current Value Display</h4>

<div class=rfig>
<a name=valueDisplay>
<IMG SRC="../fig/showval.gif">
<br>
<b>Figure 5.3: Value Display</b>
</div>

To display the current value of a signal in a circuit, click and hold
the mouse button on a wire.  This will display the current value
driven on the wire in Verilog syntax as shown in <a
href="#valueDisplay">Figure 5.3</a>.  The value will disappear when
you release the mouse button.  This feature can be used both when the
simulator is paused and when it is in continuous simulation mode.
When the simulator is in continuous simulation mode, the value
displayed will be the value at the time the mouse button was first
pressed.
<p>
There is a slight delay between pressing the mouse button and
displaying the value.  This is because double clicks on a wire are
used to set probes, so the delay must be long enough to determine that
the mouse press is not a double click.  By default, this delay is
333ms (1/3 of a second), but the delay may be changed through the <a
href="gateOptions.html#simulate">Simulate Options</a> dialog box.

<br style="clear: right;">

<h4>5.2.2 Scope View</h4>

<div class=rfig>
<a name=scopeWin>
<a href="../fig/scope.gif"><IMG SRC="../fig/small-scope.gif"><br>
(Click to Enlarge)</a><br><br>
<b>Figure 5.4: Scope Window</b>
</div>

To set a permanent probe on a signal, double click on a wire.  This
will add or remove a probe.  When a probe is set on a wire, its value
will be continuously displayed in the scope window.  The values of
multi-bit signals will be displayed as hex numbers.  The scope window
(<a href="#scopeWin">Figure 5.4</a>) is viewable any time you have at
least one signal with a probe on it.  When there are no current
probes, the scope window is hidden.
<p>
You can slide the range of time displayed in the scope window by using
the scroll bar for coarse changes, or by clicking and dragging in the
trace part of the window for fine grain control.  To zoom in, you can
press the left mouse button while holding the shift key, press the '>'
key, or press the <img src=../fig/zoom_in.gif class=tool> button on the
toolbar.  To zoom out, you can press the right mouse button while
holding the shift key, press the '<' key or press the <img
src=../fig/zoom_out.gif class=tool> button on the toolbar.
<p style="clear: right;">

<div class=rfig>
<a name=traceValues>
<table border width=400>
<TH>Scope</TH><TH >Description</TH>
<TR>
<TD ALIGN=CENTER VALIGN=CENTER BGCOLOR="#FFFFFF"><img src="../fig/logic0.gif"></TD>
<TD>&nbsp;<b>0</b> - Logic 0 or false (1 bit signals only)</TD>
</TR>

<TR>
<TD ALIGN=CENTER VALIGN=CENTER BGCOLOR="#FFFFFF"><img src="../fig/logic1.gif"></TD>
<TD>&nbsp;<b>1</b> - Logic 1 or true (1 bit signals only)</TD>
</TR>

<TR>
<TD ALIGN=CENTER VALIGN=CENTER BGCOLOR="#FFFFFF"><img src="../fig/logicx.gif"></TD>
<TD>&nbsp;<b>x</b> - Unknown value</TD>
</TR>

<TR>
<TD ALIGN=CENTER VALIGN=CENTER BGCOLOR="#FFFFFF"><img src="../fig/logicz.gif"></TD>
<TD>&nbsp;<b>z</b> - Floating or high impedance</TD>
</TR>

<TR>
<TD ALIGN=CENTER VALIGN=CENTER BGCOLOR="#FFFFFF"><img src="../fig/logicL.gif"></TD>
<TD>&nbsp;<b>L</b> - Low (the signal is either floating or zero)</TD>
</TR>

<TR>
<TD ALIGN=CENTER VALIGN=CENTER BGCOLOR="#FFFFFF"><img src="../fig/logicH.gif"></TD>
<TD>&nbsp;<b>H</b> - High (the signal is either floating or one)</TD>
</TR>

<TR>
<TD ALIGN=CENTER VALIGN=CENTER BGCOLOR="#FFFFFF"><img src="../fig/logicdata.gif"></TD>
<TD>&nbsp;<b>Data</b> - Data value on a multi-bit wire.</TD>
</TR>
</table>
<br>
<b>Figure 5.5: Logic Trace Values</b>
</div>

<p>
The time-line on the scope window is displayed as a base value shown in
the lower left corner, and an offset value shown along the bottom.  In
the example shown in <a href="#scopeWin">Figure 5.4</a>, the base
value is 50016916ns (i.e., 0.05 simulated seconds).  Each tick mark on
the x-axis represents an additional 5000ns past the base time value.

<p>

The scope includes a cross hair that follows the mouse whenever it is
in the scope window to help you correlate events across different
traces.  You can enable or disable the cross hairs with the <img
src=../fig/show_xhair.gif class=tool> button on the toolbar.  The scope
window toolbar also includes some of the same simulation control and
other simulation-related buttons that are on the main TkGate window.
<p>

<a href="#traceValues">Figure 5.5</a> shows how the various logic
values are displayed in the scope windows.  On multi-bit wires, the
value of the wire is displayed in hexadecimal, unless the scale is
such that there is no room to display the value between when it starts
and the next logic transition.  In this case, it will first compress
the value to a "#", and if there is no room to display that either, no
value or symbol will be displayed.  The colors used in the scope
traces can be configured through the <a
href="gateOptions.html#color">Color Options</a> dialog box.

<p style="clear: right;">


<h4>5.2.3 Printing Scope Traces</h4>

<div class=rfig>
<IMG SRC="../fig/scopeSelection.gif"><br>
<b>Figure 5.6: Print Region Selection</b>
</div>


To print a scope trace, first use the right mouse button to select a
region to be printed.  Click and drag with the right mouse to select
the region.  The region will be highlighted as shown in Figure 5.6.
Once you have an active region, you can press the right mouse button
again while holding the Shift key to expand or shrink the selected
region.  If you print without making a selection, then the area of the
trace visible in the scope window will be taken as the selection.
<p>
After you chosen a region, push the <img src=../fig/file_print.gif
class=tool> button on the toolbar of the scope window.  This will
bring up the Scope Print dialog box having an "Output" and a "Content"
page.  The "Output" page of this dialog box is the same as the
"Output" page of the <a href="gateEdit.html#print">dialog box used to
print circuits</a>.
<p style="clear: right;">
If you choose the "Save as Encapsulated Postscript" option, the
"Content" page will be disabled, and the selected region of the trace
will be written as a single Encapsulated Postscript figure suitable
for inclusion in a document (e.g., by Latex).
<p>

<div class=rfig>
<a href="../fig/simprint.gif"><IMG SRC="../fig/small-simprint.gif"><br>
(Click to Enlarge)</a><br><br>
<b>Figure 5.7: Scope Print Dialog Box</b>
</div>

The "Content" page (Figure 5.7) is divided into a "Range Selection"
and a "Scale Selection" portion.  The Range Selection portion has a
selector to modify the start time of the trace plot, and the range of
the selected region in the trace.  A diagram showing the total amount
of trace data available (in green), and the region selected for
printing (in gray) is shown to the right of the selectors.
<p>
The "Scale Selection" allows you to set the amount of time to plot per
line when generating output.  You must be cautious to set this
carefully, as too low a setting can result in trace output with a huge
number of pages.  To help you in setting this value, an estimate of
the number of pages needed is displayed next to this selector.  The
default value for the "Line Length" is one full scale of the scope
window at the current zoom setting.

<p style="clear: right;">


<a name="input"></a>
<h3>5.3 Controlling the Input</h3>

There are two types of built-in circuit elements that can be used to
control your circuit: the single-bit switch, the multi-bit dip switch.
You can also provide input through VPDs (Virtual Peripheral Devices).
An important VPD that is included with TkGate is the TTY which will
also be described in this section.

<h4>5.3.1 Switches and Dip Switches</h4>

<div class=rfig>
<center>
<IMG SRC="../fig/dipval.gif"><br><br>
<b>Figure 5.8: Dip Value<br>Dialog Box</b>
<br><br>

<a name=tty>
<img src=../fig/tty.gif><br><br>
<b>Figure 5.9<br>TTY Device</b><br><br>
</center>
</div>

Switches can be manipulated by simply clicking on them to toggle their
values.  To change a dip switch value, click on the dip switch to open
the dip value dialog box for setting the value of that dip switch.
Then, enter a value in the entry area, and press the "Apply" button to
set the switch.  The value should be a hexadecimal number.  The dip
value dialog box will remain open until you hit "Close", and you can
open as many at once as you like.

<a name="ttys"></a>
<h4>5.3.2 TTYs </h4>


In versions of TkGate before version 2.0, the TTY device was built
into TkGate as a primitive device.  As of version 2.0, the TTY is now
implemented as a VPD (Virtual Peripheral Device).  In order to use the
TTY device, you must open the <a href="gateEdit.html#loadlib">Library
Manager</a> and load the "tty" library.  You can then create a module
of type "TTY" in your design in the same way that you would create a
module instance for any other module.  <a href="#tty">Figure 5.9</a>
shows an example of a TTY device.  Note that it is displayed in the
magenta color of a module, rather than the blue color of built-in
devices.  See the section on the <a href="gateLibrary.html#tty"> TTY Library
Component</a> for information on how to use this device.

<p style="clear: right;">
<a name="breakpoint">
<h3>5.4 Setting Breakpoints</h3>

<div class=rfig>
<a name=simconbreak>
<a href="../fig/simcon_break.gif"><IMG SRC="../fig/small-simcon_break.gif"><br>
(Click to Enlarge)</a><br><br>
<b>Figure 5.10: Simulator Console Breakpoint Page</b>
</div>

Breakpoints can be used to set conditions which will cause a
continuously running simulation to pause.  To display the breakpoints,
press the <img src=../fig/sim_break.gif class=tool> tab on the simulator
console as shown in <a href="#simconbreak">Figure 5.10</a>.  To add a
new breakpoint, press the "Add..." button or double click on the next
empty slot under "Condition".  You can enter any valid Verilog
expression as the breakpoint condition.  You can edit the expression
of a breakpoint by double clicking on the expression.
<p>
Breakpoints will be activated for any non-zero value of their
condition expression.  When one of the registered breakpoints is
activated, the simulation will stop, and a <img src=../fig/bp_stop.gif>
symbol will appear in the "S" column of the breakpoint.  Breakpoints
are only triggered on transitions.  If you press the <img
src="../fig/sim_go.gif" class=tool> button to resume the simulation, the
simulation will continue until the breakpoint expression makes a new
transition to a non-zero value.
<p>
The "ID" column of the breakpoint list indicates an identifying number
for the breakpoint.  The column labeled "S" indicates the state of the
breakpoint.  The state is indicated by one of the following symbols:
<p>
<table class=display>
<tr><th align=left width=50>State</th><th align=left>Description</th></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td><img src=../fig/bp_bad.gif></td><td><b>Error</b> - There is an error such as a syntax error or undefined variable error in the breakpoint expression.</td></tr>
<tr><td><img src=../fig/bp_go.gif></td><td><b>Go</b> - The breakpoint is active, but has not been tripped.</td></tr>
<tr><td><img src=../fig/bp_stop.gif></td><td><b>Stop</b> - The breakpoint has tripped, and simulation is stopped at this breakpoint.</td></tr>
<tr><td><img src=../fig/bp_disabled.gif></td><td><b>Disabled</b> - The breakpoint has been temporarily disabled.</td></tr>
<tr><td><img src=../fig/bp_standby.gif></td><td><b>Stand By</b> - The breakpoint is ready and will be active when the simulator starts.</td></tr>
</table>
<p>
The "Value" column shows the current value of the breakpoint
expression.  If the expression is binary, the value will be a 1 or 0,
but if it is a multi-bit expression, then it could be an arbitrary value.
<p>
There are two buttons to "Enable" and "Disable" a breakpoint.  While a
breakpoint is disabled, the breakpoint will remain in the breakpoint
list, but its value will be ignored until you re-enable it.

<br clear=right>

<a name="memory">
<h3>5.5 Initializing Memories</h3>

A circuit can contain one or more memories (ROM and RAM gates).  You
can initialize memories from a file, or dump the contents of a memory
to a file.  The following toolbar buttons can be used to load or dump
memories.
<p>

<table class=display>
<tr><th width=75>Button</th><th align=left>Description</th></tr>
<tr><td colspan=2><hr></td></tr>

<TR>
<TD align=center><img src="../fig/sim_load.gif" class=tool></TD>
<TD><b>Load Memory</b> - Load memories from the selected file.  If a memory gate is selected, that memory
will be the default memory to load.  If the memory file contains one or more "memory" keywords,
the specified memory(ies) will be loaded with the contents of the file.  When loading a file,
the current directory, the directory of the current circuit file, and the user's home directory
will be searched.</TD>
</TR>

<TR>
<TD align=center><img src="../fig/sim_dump.gif" class=tool></TD>
<TD><b>Dump Memory</b> - Dumps the contents of the selected memory to a file.</TD>
</TR>
</table>

<br>

Memory files have the extension ".mem" be default.  The default format
for memory files is slightly different between Version 2.0 memory
files, and pre-2.0 memory files, but TkGate 2.0 can read files from
either format.
<p>
A memory file is composed lines that can contain commands, or memory
data.  Blank lines and lines beginning with '#' are ignored.  The
supported commands are:
<p>
<table class=display>
<tr><th align=left width=130>Command</th><th align=left>Description</th></tr>
<tr><td colspan=2><hr></td></tr>

<tr><td><tt>@memory</tt> <i>name</i></td><td>Memory data after this
line will be loaded into the memory given by <i>name</i>.  <i>Name</i>
should be the fully qualified Verilog name of the memory comprised of
a "." separated list of the modules down to the module in which the
memory is located.  The "<tt>@</tt>" for this command only can be
omitted, since that is the pre-2.0 style for this command.</td></tr>

<tr><td><tt>@radix</tt> <i>radix</i></td><td>Specify the radix to use
for memory data after this line.  The radix can be 2, 8, 10 or 16 with
16 being the default.</td></tr>

<tr><td><tt>@</tt><i>addr</i></td><td>Specifies the address at which
to begin loading data.  The address should be a hexadecimal number.</td></tr>

</table>
<p>

Lines that do not contain one of the above commands are assumed to be
data in the current radix.  For files loaded through the interface,
the radix is assumed to be hexadecimal, but can be changed with the
<tt>@radix</tt> command.  For files loaded through the Verilog
<tt>$readmemh</tt> system task, the assumed radix is hexadecimal, and
for files loaded through the <tt>$readmemb</tt> system task the
assumed radix is binary.
<p>
Here is an example of a memory file:
<pre>
@100
e1 f0 0 0 e1 e0 0 0
81 0 0 0 12 1 bd 0

@200
e 1 e1 d0 dc 7 85 0
</pre>
This file will load 16 bytes starting at address 100, then an
additional 8 bytes at address 200 (assuming the memory is declared
as an 8-bit wide memory).
<p>
Old style memory files use a slash after an address to indicate where
to load data.  For example:
<pre>
130/ 2 0 ed 0 60 6 62 6
138/ ed 0 5e 6 1 0 85 0
140/ 81 0 0 0 26 4 69 f0
</pre>
Here the 130, 138 and 140 are the address in hexadecimal.  You can use
either syntax in your memory files.
<p>
In the above examples, there was no explicit mention of the target
memory.  For that reason, those file can only be loaded when you
explicitly indicate the target memory either by clicking on before
pressing <img src="../fig/sim_load.gif" class=tool>, or by specifying the
memory as an argument in the <tt>$readmemh</tt> or <tt>$readmemb</tt>
system task.
<p>
Using the <tt>@memory</tt> command, you can specify the memory (or
memories) to be loaded within the file itself.  The memory keyword
requires a single argument specifying the name of a memory.  For
example:

<pre>
@memory memory.m1
@100
e1 f0 0 0 e1 e0 0 0
81 0 0 0 12 1 bd 0

@memory memory.m2
@100
62 65 61 6b 20 69 73 0a
</pre>
This memory file will load 16 bytes of data into the memory "m1" in
the instance named "memory" which is a sub-module of the root module.
It will also load 8 bytes into the memory "m2" in the same module as
"m1".
<p>
You can also use the "<tt>x</tt>" and "<tt>z</tt>" characters in any
digit of data values specified in a memory file to indicate unknown or
floating values.  For example:
<pre>
@100
10 x 8x 3e z9 3a zx 9x
</pre>
will load a memory that includes unknown and floating values.
<p>
For RAM memories, the contents of the loaded memory are frozen until
first time the write line transitions to a stable value (logic 0 or
1).  This prevents the data loaded from being destroyed due to unknown
values on the write and address lines until the circuit has time to
initialize these signals.

<h4>5.5.1 Using GMAC to Create Memory Files</h4>
<p>
In many cases, memory files are initialized to act as microstores or
to contain machine instructions for a user designed processor.  In
these cases, it is very tedious and error prone to explicitly specify
the contents of the memory.  For this reason, TkGate includes a tool,
gmac, for compiling microcode and macrocode to TkGate-compatible memory
files.  Complete documentation on <a href="gateGmac.html">Gmac</a> is
given in a later section of this document.

<a name="script">
<h3>5.6 Simulation Scripts</h3>

<div class=rfig>
<a href="../fig/simcon_script.gif"><IMG SRC="../fig/small-simcon_script.gif"><br>
(Click to Enlarge)</a><br><br>
<b>Figure 5.11: Simulator Console Script Manager Page</b>
</div>

Simulation scripts are useful for setting up a simulation before
starting, or for running a simulation in batch mode.  You can perform
most of the operations you can do manually through the interface
including setting and remove probes, changing switch values, loading
memories, setting breakpoints, and stepping the simulator.
<p>
Simulator script files use Verilog syntax.  This section will give
some simple examples of how to write scripts.  More detailed
information on Verilog format can be found in the chapter on <a
href=gateHDL.html>Verilog Modules</a>.

<h4>5.6.1 Loading Simulator Scripts</h4>

To load a simulator script, first press the <IMG
SRC="../fig/sim_script.gif" class=tool> tab on the simulator console.
You can then press the "Add..." button or double click on the next
empty slot.  The default extension for simulation scripts is ".vs".
When loading a file, the current directory, the directory of the
current circuit file, and the user's home directory will be searched.
<p>
You can also arrange for simulation scripts to be automatically
executed when you start the simulator by adding one or more simulation
scripts in the <a href="gateEdit.html#circopt">circuit options</a>
dialog box.
<p>
The "S" column next to each simulator script indicates the state of
the script.  The state is one of the following:
<p>
<table class=display>
<tr><th align=left width=50>State</th><th align=left>Description</th></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td><img src=../fig/bp_bad.gif></td><td><b>Error</b> - There is an error such as a syntax error or undefined variable error in the script.</td></tr>
<tr><td><img src=../fig/bp_go.gif></td><td><b>Go</b> - The script is active and running.</td></tr>
<tr><td><img src=../fig/ss_done.gif></td><td><b>Stop</b> - The script has completed executing.</td></tr>
<tr><td><img src=../fig/bp_disabled.gif></td><td><b>Disabled</b> - Execution of the script is disabled.</td></tr>
<tr><td><img src=../fig/bp_standby.gif></td><td><b>Stand By</b> - The script is ready and will execute when the simulator is started.</td></tr>
</table>


<h4 style="clear: right;">5.6.2 Simulator Script Format</h4>

Simulator scripts are fragments of Verilog code assumed to be defined
in the context of the body of the top-level module.  You can create
one or more parallel threads as well as declare local variables for
use within the script.

<p>
Most scripts are defined as a Verilog <tt>initial</tt> block.  For
example:
<pre>
  initial
    begin
      $readmemh("test.mem");    // Load memory file "test.mem".
      $tkg$probe(a, b, c);      // Place probes on the signals a, b and c.
      repeat (5)                // Advance the simulator 5 steps of the
        @ (posedge clock);      //    clock named 'clock'.
      # 10;                     // Advance the simulator 10 epochs.
      $stop;                    // Stop the simulator and put it in "pause" mode.
    end
</pre>

If you define multiple <tt>initial</tt> blocks in your script file,
each block will execute in parallel.  You can also use <tt>always</tt>
blocks which execute their bodies in an infinite loop.
<p>
You can also define local variables in a simulator script.  For example:
<pre>
  integer i;

  initial
    begin
      for (i = 0;i < 10;i = i + 1)        // Loop ten times
        begin
          @ (posedge clock);              // Advance to rising edge of "clock".
          $display("%t: x=%h",$time,x);   // Print time and value of x signal.
        end
      $stop;                              // Pause the simulator.
    end
</pre>
This example will step for 10 clock periods and print the value of the
<tt>x</tt> signal in the simulator console at each of those clock periods.
<p>

<h4>5.6.3 Setting Signal Values</h4>


<div class=rfig>
<a name=adder>
<IMG SRC="../fig/adder_circuit2.gif">
<br>
<b>Figure 5.12: Full Adder Circuit</b>
</div>

You can set the value of any register variables in a module using an
assignment statement with the "<tt>=</tt>" operator.  For netlist
modules, any nets that are attached to a switch or a dip element are
considered register variables.  However, unlike in TkGate 1.8 script
files, you must use the name of the wire, and not the name of the
switch itself.  For example, the following script will set probes on
the inputs and output of the circuit shown in Figure 5.12, then step
through each combination of inputs with a delay of 50 epochs after we
set the input values:
<p>
<pre>
  initial
    begin
      $tkg$probe(a,b,ci,s,co);
      ci = 0; a = 0; b = 0;
      #50 ci = 0; a = 0; b = 0;
      #50 ci = 0; a = 0; b = 1;
      #50 ci = 0; a = 1; b = 0;
      #50 ci = 0; a = 1; b = 1;
      #50 ci = 1; a = 0; b = 0;
      #50 ci = 1; a = 0; b = 1;
      #50 ci = 1; a = 1; b = 0;
      #50 ci = 1; a = 1; b = 1;
    end
</pre>
Note that the left hand side of each assignment statement is a wire
name.  For example, <tt>a</tt> is used instead of the name of the
switch (<tt>g25</tt>) to which it is attached.  The right-hand side of
assignment statements can be arbitrary expressions referencing
variables declared in the simulation script and any nets in the
design.
<p>
You can use fully qualified path names to set the value of switches/nets
at levels other than the top level.  For example:
<pre>
    top.memctl.ttyreg = 8'h
</pre>
will set the value of <tt>ttyreg</tt> in the module instance
<tt>memctl</tt> which is instantiated in the top-level module.

<h4 style="clear: right;">5.6.4 Commonly Used System Tasks</h4>

Scripts can make calls to system tasks to perform various useful
functions.  Systems tasks begin with a "<tt>$</tt>" and are used
somewhat like function calls.  A complete description of system tasks
are given in the <a href=systemTasks.html>System Tasks Appendix</a>.
Some of the system tasks that are frequently used in scripts are:


<table class=display>
<tr><th width=400 align=left>Task</th><th align=left>Description</th></tr>
<tr><td colspan=2><hr></td></tr>

<tr><td><tt>$display(</tt><i>arg1</i><tt>, </tt><i>arg2</i><tt>, </tt>...<tt>)</tt></td><td>
Display messages to the simulator console.  Similar to the C <tt>printf</tt> in functionality.</td></tr>

<tr><td><tt>$readmem(</tt><i>filename</i><i> [, memory [, start [, stop]]]</i><tt>)</tt></td><td>
Loads the contents of a memory file to one or more memories.
</td></tr>

<tr><td><tt>$tkg$probe(</tt><i>sig1</i><tt>, </tt><i>sig2</i><tt>, </tt>...<tt>)</tt></td><td>
Places probes on the specified signals.
</td></tr>

<tr><td><tt>$tkg$unprobe(</tt><i>sig1</i><tt>, </tt><i>sig2</i><tt>, </tt>...<tt>)</tt></td><td>
Removes probes from the specified signals.
</td></tr>

<tr><td><tt>$stop</tt></td><td>
Stop the simulation and put it into "paused" mode.
</td></tr>

<tr><td><tt>$finish</tt></td><td>
Terminate the simulation and return to "edit" mode.
</td></tr>

<tr><td><tt>$random</tt><i>[(seed)]</i></td><td>
Return a random number, or set the seed if an argument is given.
</td></tr>

<tr><td><tt>$time</tt></td><td>
Return the simulation time in epochs as a 64-bit integer.
</td></tr>

<tr><td><tt>$tkg$systime</tt></td><td>
Returns the actual system time in milliseconds since January 1, 1970 as a 64-bit integer.
</td></tr>


</table>
<p>

<h4>5.6.5 Using Scripts for Test Vector Generation</h4>

Another method for using scripts is to generate random test vectors.
For example, suppose we wish to test a 32-bit adder that we have
designed.  The following script will apply 10,000 random vectors to
the design and check them against the answer calculated in the script.
When a mismatch between the circuit output and the expected output is
found, an error message is displayed, and the simulation is paused so
the user can view internal signal values.

<pre>
  reg tempCout;                                    // Declare 1-bit variable for carry out
  reg [31:0] tempS;                                // Declare 32-bit variable for sum
  integer i;                                       // Declare index variable

  initial
    begin
      $random($tkg$systime);                       // Use system clock to set random seed
      for (i = 0;i < 10000; i = i + 1)             // Loop 10,000 times
        begin
          a = $random;                             // Pick random value for A
          b = $random;                             // Pick random value for B
          cin = $random;                           // Pick random value for carry-in

          # 50;                                    // Step 50 epochs

          tempCout = (33'h0 + a + b + cin) >> 32;  // Get correct carry out value
          tempS = a + b + cin;                     // Get correct sum value

          //
          // If output from the design is not as expected, print an error message
          // and stop the simulator. 
          //
          if ({cout,s} != {tempCout,tempS})
            begin
              $display("error: got 31'h%h + 31'h%h + 31'h%h = {1'h%h, 31'h%h}",a,b,cin,cout,s);
              $display(" -- should have gotten {1'h%h, 31'h%h}", tempCout, tempS);
              $stop;
            end
        end

      $display("test completed.");
      $stop;
    end
</pre>

<a name="error">
<h3>5.7 Using the Error Reporter</h3>


<div class=rfig>
<a name=errbox>
<a href="../fig/simerr.gif"><IMG SRC="../fig/small-simerr.gif"><br>
(Click to Enlarge)</a>
<br><br>
<b>Figure <![figure:hdleditor]>5.13: Simulator Error List</b>
</div>

If there are any errors in the circuit when you start the simulator,
an error list box will appear as shown in <a href="#errbox">Figure
5.13</a>.  Click on an error message to gave TkGate show you the
location of the error.  If the error is in a netlist module, TkGate
will navigate to the module and place cross-hairs over the as shown in
<a href="#xhair">Figure 5.14</a>.  If the error is in an HDL module,
then the line with the error will be highlighted.

<div class=lfig>
<a name=xhair>
<img src=../fig/simerr_circ.gif><br><br>
<b>Figure <![figure:hdleditor]>5.14: Error Location Cross-hairs</b>
</div>

<p>
In the example shown here, the module "ADD32" had an internal port
name of "a", but the name "A" was erroneously used on the interface.
The first error message indicates that the external port name "A" does
not have a corresponding port inside, and the second error message
indicates that the internal port "a", does not have a corresponding
port on the outside.

<br style="clear: both;">

<a name="delay">
<h3>5.8 Gate Delay Files</h3>

Gate delay, area and power (power specifications are not used)
parameters can be specified through a collection of gdf (Gate Delay
File) specification files.  The default file "gdf/default.gdf" in the
TkGate home directory is always loaded, but the definitions may be
replaced by loading additional delay files through the <a
href="gateOptions.html#simulate">Simulate Options</a> dialog box.
<p>
Each gate delay file should contain one or more technology blocks
having the form:
<pre>
technology cmos {
  ...
}
</pre>
Technology blocks implement a new set of delay parameters and the
specified technology name becomes a name that can be specified as a
technology through the <a href="gateEdit.html#delay">"Delay" page of
the gate properties box</a>.  The body of the technology block should
consist of a set of gate primitive declarations.  Each gate primitive
should be described in a block defining all the delay and possible
area and power parameters of the block in terms of number of inputs,
bit-widths of inputs and existence of inverters on inputs.  For
example, the block for the "mux" primitive might look like:

<pre>
primitive mux {
  delay&lt;I-Z> = (2*(num(S)+1) + 2*num(I)) + 2*(inv(I) || inv(Z)); 
  delay&lt;S-Z> = (2*(num(S)+1) + 2*num(I));
  area = bits(Z)*((2*(num(S)+1) + 2*num(I)) + 2*inv(I)); 
}
</pre>

The two "delay" lines define the delay from the input to the output
(I-Z) and from the select to the output (S-Z), respectively.  The area
line defines the estimated area of the gate.  Expressions may include
the C-style operators <tt>"+", "-", "*", "/", "&&", "||", "==", "!=", ">", ">=", "&lt;",
"&lt;="</tt>, and <tt>"!"</tt>, the "power of" operator <tt>"**"</tt> and
the functions listed in the table below.


<p>
<table border>
<tr><th>Function</th><th>Description</th></tr>

<tr><td>num(p)</td><td> Normally, "p" specifies a group of related
ports in which case this function returns the number of ports in the
group.  For example, on an n-input AND gate with inputs I1 through In,
the expression num(I) would return n.  </td></tr>

<tr><td>bits(p)</td><td> Returns the number of bits on the specified
port.  If "p" represents a group of ports, the highest bit-width of
the group is returned.  </td></tr>

<tr><td>inv(p)</td><td> When "p" is specific port, a 1 is returned if
there is an inverter on the port, 0 otherwise.  When "p" specifies a
group of ports, the number of ports with inverters is returned.
</td></tr>

<tr><td>log(expr)</td><td>Returns the ceiling of the base-2 log of an expression.</td></tr>
</td></tr>

</table>
<p>

<p>
It is also possible to write procedural delay/area definitions.  For example, consider
the parameter specification for the "and" primitive.
<pre>
primitive and {
  delay&lt;I-Z> = {
    if ((inv(I) == num(I)))     // Determine if an inverter is necessary.  An
      d = inv(Z);               //   inverter is not required if the output is
    else if ((inv(I) == 0))     //   inverting and all inputs are non-inverting
      d = !inv(Z);              //   (i.e., it is an AND gate), or if all inputs
    else                        //   are inverting and the output is non-inverting
      d = 1;                    //   (i.e., it is a NOR gate). 

    if (num(I) == 1) {          // If one input, treat this as a reduction gate    
      return 2*bits(I0) + 2*d;  //   one Tr. delay per bit plus inverter delay.    
    } else {                    // If multiple inputs, treat this as a normal gate 
      return 2*num(I) + 2*d;    //   one Tr. delay per input plus inverter delay.  
    }
  }

  area = {
    if ((inv(I) == num(I)))     // Estimate number of inverters required.  If all
      d = inv(Z);               //   inputs are inverted, an inverter is required
    else if ((inv(I) == 0))     //   iff the output is inverted.  If all inputs
      d = !inv(Z);              //   are non-inverted, an inverter is required iff
    else                        //   the output is non-inverted.  Otherwise we need
      d = inv(I);               //   an inverter for each inverted input.

    if (num(I) == 1) {          // If one input, treat this as a reduction gate    
      a = 2*bits(I0) + 2*d;	//   one Tr. per bit plus inverter Trs.    
    } else {			// If multiple inputs, treat this as a normal gate 
      a = 2*num(I) + 2*d;	//   one Tr. per input plus inverter Trs.  
    }
    return bits(Z)*a;           // Multiply by number of bit slices.
  }
}
</pre>

In a procedural specification, statements are executed sequentially
until a "<tt>return</tt>" statement sets the value for the parameter.
C-style <tt>if</tt> and <tt>switch</tt> statements may be used in
procedural specifications, but there are no looping constructs.
<p>

A technology block need not specify every single primitive type.  For
example, suppose we have a technology definition for CMOS which
includes a definition for a buffer as shown here:

<pre>
technology CMOS {
  primitive buf {
    delay&lt;I-Z> = 2 + 2*(inv(I) == inv(Z));
    area = bits(Z)*(2 + 2*(inv(I) == inv(Z)));
  }
  ...rest of CMOS definition...
}
</pre>

We might create a special technology definition "HP_CMOS" which
contains high-power versions of a subset of the standard CMOS gates.
In the example here, we provide a special high-power buffer that has
 the delay of a standard buffer, but twice the area (and power).

<pre>
/*
 * A high-power buffer with half the delay and double the area/power.
 */
technology HP_CMOS {
  primitive buf {
    delay&lt;I-Z> =  1 + (inv(I) == inv(Z));
    area = 2*bits(Z)*(2 + 2*(inv(I) == inv(Z)));
  }
}
</pre>
<p>
If you assign the technology type HP_CMOS to any gates for which there
is no primitive definition, delay values from the technology "default"
will be used.
<p>

The table below lists all of the primitive gates for which delay may
be specified and their delay parameters.  The default values given are
the values for a "basic" gate created from the "Make" with no changes
to the number of inputs, input/output inverters, or bit widths of any
of the ports.

<br><br>
<center>
<table border>
<tr><th>Gate Type</th><th>Parameter</th><th>Default</th><th align=left>Description</th></tr>
<tr><td>and </td><td> I-Z </td><td> 6</td><td>Delay from input to output.</td></tr>
<tr><td>or </td><td> I-Z </td><td> 6</td><td>Delay from input to output.</td></tr>
<tr><td>xor </td><td> I-Z </td><td> 8</td><td>Delay from input to output.</td></tr>
<tr><td>buf </td><td> I-Z </td><td> 4</td><td>Delay from input to output.</td></tr>
<tr><td rowspan=2>bufif1 </td><td> E-Z </td><td> 4</td><td>Delay from enable to output.</td></tr>
<tr><td> I-Z </td><td> 6</td><td>Delay from data input to output.</td></tr>
<tr><td rowspan=2>nmos </td><td> I-Z </td><td> 2</td><td>Delay from data input to output.</td></tr>
<tr><td> G-Z </td><td> 1</td><td>Delay from gate to output.</td></tr>
<tr><td rowspan=2>pmos </td><td> I-Z </td><td> 2</td><td>Delay from data input to output.</td></tr>
<tr><td> G-Z </td><td> 1</td><td>Delay from gate to output.</td></tr>
<tr><td rowspan=4>add </td><td> A/B-S </td><td> 68</td><td>Delay from operand input to sum.</td></tr>
<tr><td> A/B-CO </td><td> 70</td><td>Delay from operand input to carry out.</td></tr>
<tr><td> CI-S </td><td> 62</td><td>Delay from carry in to sum.</td></tr>
<tr><td> CI-CO </td><td> 64</td><td>Delay from carry in to carry out.</td></tr>
<tr><td rowspan=3>register </td><td> setup </td><td> 10</td><td>Time before clock edge data-in must be stable.</td></tr>
<tr><td> hold </td><td> 10</td><td>Time after clock edge data-in must remain stable.</td></tr>
<tr><td> CK-Q </td><td> 20</td><td>Time from clock edge until output changes.</td></tr>
<tr><td rowspan=2>mux </td><td> S-Z </td><td> 8</td><td>Delay from select line to output.</td></tr>
<tr><td> I-Z </td><td> 8</td><td>Delay from data input to output.</td></tr>
<tr><td rowspan=2>demux </td><td> E-Z </td><td> 6</td><td>Delay from enable line to output.</td></tr>
<tr><td> I-Z </td><td> 6</td><td>Delay from data input to output.</td></tr>
<tr><td>mult </td><td> A/B-P </td><td> 252</td><td>Delay from operand input to output.</td></tr>
<tr><td rowspan=2>div </td><td> A/B-Q </td><td> 236</td><td>Delay from operand input to quotient.</td></tr>
<tr><td> A/B-R </td><td> 236</td><td>Delay from operand input to remainder.</td></tr>
<tr><td rowspan=7>ram </td><td> OE-D </td><td> 10</td><td>Delay from output enable to data-out.</td></tr>
<tr><td> CS-D </td><td> 10</td><td>Delay from chip select to data out.</td></tr>
<tr><td> A-D </td><td> 70</td><td>Delay from the address line to the data out.</td></tr>
<tr><td> addr_setup </td><td>10</td><td>Time before write is asserted that address must be stable.</td></tr>
<tr><td> data_setup </td><td> 10</td><td>Time before write is asserted that data-in must be stable.</td></tbr>
<tr><td> addr_hold </td><td> 10</td><td>Time after write is unasserted that address must remain stable.</td></tr>
<tr><td> data_hold </td><td> 10</td><td>Time after write is unasserted that data-in must remain stable.</td></tr>
<tr><td rowspan=2>rom </td><td> OE-D </td><td> 10</td><td>Delay from output enable to data-out.</td></tr>
<tr><td> A-D </td><td> 50</td><td>Delay from address to data-out.</td></tr>

<tr><td rowspan=2>lshift </td><td> S-Z </td><td> 16</td><td>Delay from shift select to output.</td></tr>
<tr><td> I-Z </td><td> 18</td><td>Delay from data-in to output.</td></tr>
<tr><td rowspan=2>rshift </td><td> S-Z </td><td> 16</td><td>Delay from shift select to output.</td></tr>
<tr><td> I-Z </td><td> 18</td><td>Delay from data-in to output.</td></tr>
<tr><td rowspan=2>arshift </td><td> S-Z </td><td> 16</td><td>Delay from shift select to output.</td></tr>
<tr><td> I-Z </td><td> 18</td><td>Delay from data-in to output.</td></tr>
<tr><td rowspan=2>roll </td><td> S-Z </td><td> 16</td><td>Delay from shift select to output.</td></tr>
<tr><td> I-Z </td><td> 18</td><td>Delay from data-in to output.</td></tr>
</table>
</center>


</BODY>
</HTML>