File: gateTypeList.html

package info (click to toggle)
tkgate 2.1%2Brepack-7
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 28,808 kB
  • sloc: ansic: 62,300; tcl: 20,345; xml: 2,731; yacc: 1,177; lex: 839; sh: 701; makefile: 187; perl: 39
file content (527 lines) | stat: -rw-r--r-- 17,110 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
   <TITLE>List of Built-In Gate Types</TITLE>
    <META http-equiv="Content-Style-Type" content="text/css">
    <link rel="stylesheet" href="../tkgate.css" type="text/css">
</HEAD>
<BODY>

<H2>A. List of Built-In Gate Types</H2>
 
<TABLE BORDER COLS=4 NOSAVE >
<TR>
<TH WIDTH="100">Name</TH>

<TH WIDTH="100">Keywords(s)</TH>

<TH WIDTH="100">Shortcut(s)</TH>

<TH WIDTH="100">Symbol</TH>

<TH WIDTH="400">Description</TH>
</TR>

<TR NOSAVE>
<TD WIDTH="100">AND</TD>

<TD WIDTH="100">and, nand</TD>

<TD WIDTH="100"><table><tr><td>a</td></tr><tr><td>A</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF" NOSAVE><IMG SRC="../fig/g_and.gif"></TD>

<TD>Outputs the logical AND of the input signals.&nbsp;  All of the inputs
must be have either the same bit width as the output, or be single bit.&nbsp; 
In the case of a gate with mixed multi- and single-bit inputs, the single-bit
inputs are assumed to be connected to across all bits of the multi-bit signals.</TD>
</TR>

<TR>
<TD WIDTH="100">OR</TD>

<TD WIDTH="100">or, nor</TD>

<TD WIDTH="100"><table><tr><td>o</td></tr><tr><td>O</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_or.gif"></TD>

<TD>Outputs the logical OR of the input signals.&nbsp;  All of the inputs
must be have either the same bit width as the output, or be single bit.&nbsp; 
In the case of a gate with mixed multi- and single-bit inputs, the single-bit
inputs are replicated to all of the other bits.</TD>
</TR>

<TR>
<TD WIDTH="100">XOR</TD>

<TD WIDTH="100">xor, xnor</TD>

<TD WIDTH="100"><table><tr><td>x</td></tr><tr><td>X</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_xor.gif"></TD>

<TD>Outputs the logical XOR of the input signals.&nbsp;  All of the inputs
must be have either the same bit width as the output, or be single bit.&nbsp; 
In the case of a gate with mixed multi- and single-bit inputs, the single-bit
inputs are replicated to all of the other bits.</TD>
</TR>

<TR>
<TD WIDTH="100">Buffer</TD>

<TD WIDTH="100">buf, not</TD>

<TD WIDTH="100"><table><tr><td>b</td></tr><tr><td>I</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_buf.gif"></TD>

<TD>Buffers the input signal.&nbsp;  If the input signal is a value other
than logic-1 or logic-0 (e.g., floating) the output will be the unknown
signal.&nbsp;  The inputs and outputs must have the same bit width.</TD>
</TR>

<TR>
<TD WIDTH="100">Tri-State Buffer</TD>

<TD WIDTH="100">bufif1, bufif0, 
<BR>notif1,notif0</TD>

<TD WIDTH="100"><table><tr><td>t</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_bufif.gif"></TD>

<TD>Outputs a buffered signal when the enable line (top) is logic-1.&nbsp; 
Note that an inverter placed on the output of a tri-state buffer is not
equivalent to connecting the output to a separate inverter element.&nbsp; 
With an inverted output, a logic-0 on the enable line will result in floating
output (i.e., Verilog notif behavior).&nbsp;  The input and output must
have the same bit width, and the enable line must be single bit.</TD>
</TR>

<TR>
<TD WIDTH="100">Reduction Gates</TD>

<TD WIDTH="100">and, nand,
<br> or, nor,
<br> xor, xnor
</TD>

<td width="100"><table>
<tr><td>Ctl-r a</td><td>Ctl-r A</td></tr>
<tr><td>Ctl-r o</td><td>Ctl-r O</td></tr>
<tr><td>Ctl-r x</td><td>Ctl-r X</td></tr>
</table></td>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_red.gif"></TD>

<TD>Outputs the logical AND of all of the bits on the input.&nbsp;  Reduction
gates for OR and XOR are also available.&nbsp;  The output must be single-bit.</TD>
</TR>

<TR>
<TD WIDTH="100">Constants</TD>

<TD WIDTH="100">supply1, supply0</TD>

<TD WIDTH="100"><table><tr><td width=50>g</td><td>v</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_supply.gif" ></TD>

<TD>Outputs a logic-1 or logic-0.&nbsp;  There are no bit-width restrictions.</TD>
</TR>

<TR>
<TD WIDTH="100">Switch</TD>

<TD WIDTH="100">switch</TD>

<TD WIDTH="100"><table><tr><td>s</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_switch.gif" HEIGHT=45 WIDTH=59></TD>

<TD>Outputs a single-bit logic value according to the switch setting.&nbsp; 
Clicking on a switch while in simulation mode will toggle its state.&nbsp; 
The output must be single-bit.</TD>
</TR>

<TR>
<TD WIDTH="100">Dip Switch</TD>

<TD WIDTH="100">dip</TD>

<TD WIDTH="100"><table><tr><td>d</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_dip.gif" HEIGHT=59 WIDTH=93></TD>

<TD>Outputs a multi-bit signal according to the switch setting.&nbsp; 
Clicking on a dip switch while in simulation mode will enable a hex value
for the switch to be entered.</TD>
</TR>

<TR>
<TD WIDTH="100">Tty</TD>

<TD WIDTH="100">tty</TD>

<TD WIDTH="100"><table><tr><td>d</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_tty.gif"></TD>

<TD>Tty gates can be used to model an interactive terminal.&nbsp;  Your
circuit can send characters to be displayed on the tty, or receive
<h3></h3>characters that were typed in the tty.&nbsp;  See the <a href="gateSim.html#ttys">section on ttys</a> in
the simulator manual for details on how to use ttys.
 
</TD>
</TR>

<TR>
<TD WIDTH="100">Clock</TD>

<TD WIDTH="100">clock</TD>

<TD WIDTH="100"><table><tr><td>c</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_clock.gif" HEIGHT=59 WIDTH=129></TD>

<TD>Outputs a clock signal with a specified pulse-width (f), phase (p),
and duty width(dw).&nbsp;  The output must be single bit.</TD>
</TR>

<TR>
<TD WIDTH="100">Concat</TD>

<TD WIDTH="100">concat</TD>

<TD WIDTH="100"><table><tr><td>w</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_merge.gif" HEIGHT=54 WIDTH=59></TD>

<TD>Combines multiple wires into a single multi-bit wire.&nbsp;  The sum
of the bits on the left side must add up to the bit width of the right
side.&nbsp;  The current implementation has a limitation that all signals
must flow in the same direction.&nbsp;  That is, you must put all of the
driving gates on either the left or right.</TD>
</TR>

<TR>
<TD WIDTH="100">Wire Tap</TD>

<TD WIDTH="100">n/a</TD>

<TD WIDTH="100"><table><tr><td>n/a</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_tap.gif"></TD>

<TD>Pulls off a sub-range of a multi-bit wire.&nbsp; This gate type is not
created through the menus like most other gates, but by dropping the
end of a wire on a wire of a larger bit-width.&nbsp;  You can use the
"Properties..." option from the "Gate" menu to select the bit range to
be extracted.&nbsp;  This gate can only be used to "read" the value of a wire,
and cannot be used to "wire" a value on a multi-bit bus.
</TD>
</TR>

<TR>
<TD WIDTH="100">Adder</TD>

<TD WIDTH="100">add</TD>

<TD WIDTH="100"><table><tr><td>+</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_add.gif" HEIGHT=71 WIDTH=90></TD>

<TD>Outputs the sum of the inputs.&nbsp;  The inputs must have the same
bit width as the output, and the carry-in and -out must be single bit.&nbsp; 
The carry-in line is indicated by the dot.</TD>
</TR>

<TR>
<TD WIDTH="100">Divider</TD>

<TD WIDTH="100">div</TD>

<TD WIDTH="100"><table><tr><td>/</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_div.gif" HEIGHT=69 WIDTH=98></TD>

<TD>Outputs the quotient and remainder of the inputs.&nbsp;  The left input
is the dividend, and the right input is the divisor.&nbsp;  There are no
bit-width restrictions, but if the result does not fit in the supplied
bit-width, it may be truncated.</TD>
</TR>

<TR>
<TD WIDTH="100">Multiplier</TD>

<TD WIDTH="100">mult</TD>

<TD WIDTH="100"><table><tr><td>*</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_mul.gif" HEIGHT=67 WIDTH=89></TD>

<TD>Outputs the product of the inputs.&nbsp;  There are no bit-width restrictions,
but if the result does not fit in the supplied bit-width, it may be truncated.</TD>
</TR>

<TR>
<TD WIDTH="100">Multiplexer</TD>

<TD WIDTH="100">mux</TD>

<TD WIDTH="100"><table><tr><td>m</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_mux.gif" HEIGHT=67 WIDTH=85></TD>

<TD>Outputs the input selected by the select line.&nbsp;  The bit-width
of the inputs must match the bit-width of the output, and the bit-width
of the select line must be the ceiling of the base-2 log of the number
of input lines.</TD>
</TR>

<TR>
<TD WIDTH="100">Decoder</TD>

<TD WIDTH="100">demux</TD>

<TD WIDTH="100"><table><tr><td>D 2</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_demux.gif"></TD>

<TD>Outputs the input selected by the select line.&nbsp;  The bit-width
of the inputs must match the bit-width of the output, and the bit-width
of the select line must be the ceiling of the base-2 log of the number
of input lines.</TD>
</TR>

<TR>
<TD WIDTH="100">Left Shift</TD>

<TD WIDTH="100">lshift</TD>

<TD WIDTH="100"><table><tr><td>S L</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_lshift.gif"></TD>

<TD>Performs a logical shift-left of the input.&nbsp;  The input and output
must have the same bit width, and the bit-width of the shift select line
must be the ceiling of the base-2 log of the input/output bit-width.</TD>
</TR>

<TR>
<TD WIDTH="100">Right Shift</TD>

<TD WIDTH="100">rshift</TD>

<TD WIDTH="100"><table><tr><td>S R</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_rshift.gif"></TD>

<TD>Performs a logical shift-right of the input.&nbsp;  The input and output
must have the same bit width, and the bit-width of the shift select line
must be the ceiling of the base-2 log of the input/output bit-width.</TD>
</TR>

<TR>
<TD WIDTH="100">Arithmetic Shift</TD>

<TD WIDTH="100">arshift</TD>

<TD WIDTH="100"><table><tr><td>S A</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_arshift.gif"></TD>

<TD>Performs an arithmetic shift-right of the input.&nbsp; The input
and output must have the same bit width, and the bit-width of the
shift select line must be the ceiling of the base-2 log of the
input/output bit-width.</TD>
</TR>

<TR>
<TD WIDTH="100">Roll</TD>

<TD WIDTH="100">roll</TD>

<TD WIDTH="100"><table><tr><td>S O</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_roll.gif"></TD>

<TD>Rolls the input bits to the left.&nbsp;  The input and output
must have the same bit width, and the bit-width of the shift select line
must be the ceiling of the base-2 log of the input/output bit-width.</TD>
</TR>

<TR>
<TD WIDTH="100">Register</TD>

<TD WIDTH="100">register</TD>

<TD WIDTH="100"><table><tr><td>r</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_reg.gif" HEIGHT=48 WIDTH=110></TD>

<TD>Outputs the current value of the register, and stores the input
value on a positive edge on the clock line.  The data value is only
loaded when the active-low enable (EN) line is asserted.  The register
can be cleared asynchronously with the active-low clear (CL) line.
The input and output must have the same bit width, and the clock, EN
and CL lines must be single-bit.</TD>
</TR>

<TR>
<TD WIDTH="100">Flip-Flop</TD>

<TD WIDTH="100">ff</TD>

<TD WIDTH="100"><table><tr><td>f</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_ff.gif" HEIGHT=59 WIDTH=73></TD>

<TD>Outputs the current value and inverted value of the
flip-flop, and stores the input value on a positive edge on the clock
line.  The data value is only loaded when the active-low enable (E)
line is asserted.  The flip-flop can be cleared asynchronously with the
active-low clear (C) line.  The input and output must have the same
bit width, and the clock, E and C lines must be single-bit.</TD>
</TR>

<TR>
<TD WIDTH="100">RAM</TD>

<TD WIDTH="100">ram</TD>

<TD WIDTH="100"><table><tr><td>R</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_ram.gif" HEIGHT=87 WIDTH=95></TD>

<TD>When the chip-select line (CS) and output enable (OE) lines are low,
the memory value addressed by the address line (A) is output to the data
line (D).&nbsp;   When the chip select line and the write enable line
(WE) are low, the value present on the data line is stored in the memory
at the address specified by the address line.&nbsp;  The control lines,
CS, OE, WE must be single-bit.&nbsp;  The address and data lines must be
no more than 32 bits.&nbsp;  RAMs can be initialized from a file at simulation
time.&nbsp; </TD>
</TR>

<TR>
<TD WIDTH="100">ROM</TD>

<TD WIDTH="100">rom</TD>

<TD WIDTH="100"><table><tr><td>u</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_rom.gif" HEIGHT=73 WIDTH=84></TD>

<TD>When the output enable line (OE) is low,  the memory value addressed
by the address line (A) is output to the data line (D).&nbsp;   The
output enable line must be single bit, and the address and data lines must
be no more than 32 bits.&nbsp;  ROMs can be initialized from a file at simulation
time.&nbsp; </TD>
</TR>

<TR>
<TD WIDTH="100">NMOS Trans.</TD>

<TD WIDTH="100">nmos</TD>

<TD WIDTH="100"><table><tr><td>Ctl-t n</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_nmos.gif" HEIGHT=62 WIDTH=53></TD>

<TD>Implements a Verilog-style NMOS element.&nbsp;  All signals must have
the same bit width.&nbsp;  NMOS elements with multi-bit inputs and outputs
are treated as parallel transistors.</TD>
</TR>

<TR>
<TD WIDTH="100">PMOS Trans.</TD>

<TD WIDTH="100">pmos</TD>

<TD WIDTH="100"><table><tr><td>Ctl-t p</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_pmos.gif" HEIGHT=68 WIDTH=54></TD>

<TD>Implements a Verilog-style PMOS element.&nbsp;  All signals must have
the same bit width.&nbsp;  PMOS elements with multi-bit inputs and outputs
are treated as parallel transistors.</TD>
</TR>

<TR>
<TD WIDTH="100">LED</TD>

<TD WIDTH="100">led</TD>

<TD WIDTH="100"><table>
<tr><td>l</td><td>L 8</td></tr>
<tr><td>&nbsp;</td></tr>
<tr><td width=50>L s</td><td>L h</td></tr>
<tr><td>&nbsp;</td></tr>
<tr><td>L d</td></tr>
</table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_led.gif" HEIGHT=149 WIDTH=116></TD>

<TD>

LED Indicator elements which can display the values of signals in your
circuit.  The different types of LED are indicated by a property flag
of the basic LED circuit element.  The types from upper left are: bit,
bar graph, direct, hexadecimal and decimal.  The number of digits or
bars is automatically determined from the size of the input wire.  For
the three types of 7-segment LEDs, the interpretation of the input
data depends on the type.  For direct LEDs, each 7-bits of the input
signal directly control one segment of the LED numbered from
top-to-bottom, left-to-right.  For hexadecimal LEDs, each four bit
group controls one digit.  For decimal LEDs, the value of the input
signal is displayed as an unsigned decimal value.
</TD>
</TR>

<TR>
<TD WIDTH="100">Module</TD>

<TD WIDTH="100"><I>name</I></TD>

<TD WIDTH="100"><table><tr><td>M</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_block.gif" HEIGHT=88 WIDTH=101></TD>

<TD>Implements a user-defined module.&nbsp;  An arbitrary number of inputs,
outputs and inout ports can be used with no restrictions on bit width.&nbsp; 
The name of the module is used in the save file and cannot be the same
as any of the built-in gates.</TD>
</TR>

<TR>
<TD WIDTH="100">Comment</TD>

<TD WIDTH="100">comment</TD>

<TD WIDTH="100"><table><tr><td>C</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_comment.gif"></TD>

<TD>Comments can be used to place embed text into a circuit diagram.  Comments have no effect
on the behavior of circuits.</TD>
</TR>

<TR>
<TD WIDTH="100">Frame</TD>

<TD WIDTH="100">frame</TD>

<TD WIDTH="100"><table><tr><td>F</td></tr></table></TD>

<TD ALIGN=CENTER VALIGN=CENTER WIDTH="100" BGCOLOR="#FFFFFF"><IMG SRC="../fig/g_frame.gif"></TD>

<TD>Frames can be used to create visual segmentation of a circuit diagram.  Frames have no effect
on the behavior of circuits.
</TD>
</TR>
</TABLE>

</body>
</html>