File: prelude.gs

package info (click to toggle)
tkgofer 2.0-1
  • links: PTS
  • area: non-free
  • in suites: hamm, slink
  • size: 1,760 kB
  • ctags: 2,696
  • sloc: ansic: 21,409; yacc: 619; sh: 311; tcl: 106; makefile: 66
file content (1124 lines) | stat: -rw-r--r-- 33,862 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
----------------------------------------------------------------------
-- TkGofer v. 2.0
-- Ton Vullinghs, Koen Claessen, July 1997
----------------------------------------------------------------------
-- prelude.gs

-- The majority of this file is taken from the Gofer cc prelude:

--         __________   __________   __________   __________   ________
--        /  _______/  /  ____   /  /  _______/  /  _______/  /  ____  \
--       /  / _____   /  /   /  /  /  /______   /  /______   /  /___/  /
--      /  / /_   /  /  /   /  /  /  _______/  /  _______/  /  __   __/
--     /  /___/  /  /  /___/  /  /  /         /  /______   /  /  \  \ 
--    /_________/  /_________/  /__/         /_________/  /__/    \__\
--
--    Functional programming environment, Version 2.30
--    Copyright Mark P Jones 1991-1994.

help = "press :? for a list of commands"

-- Operator precedence table: -----------------------------------------------

infixl 9 !!
infixr 9 ., @@
infixr 8 ^
infixl 7 *
infix  7 /, `div`, `quot`, `rem`, `mod`
infixl 6 +, -
infix  5 \\
infixr 5 ++, :
infix  4 ==, /=, <, <=, >=, >
infix  4 `elem`, `notElem`
infixr 3 &&
infixr 2 ||
infixr 0 $

-- Standard combinators: ----------------------------------------------------

primitive strict "primStrict" :: (a -> b) -> a -> b

const          :: a -> b -> a
const k x       = k

id             :: a -> a
id    x         = x

curry          :: ((a,b) -> c) -> a -> b -> c
curry f a b     =  f (a,b)

uncurry        :: (a -> b -> c) -> (a,b) -> c
uncurry f (a,b) = f a b

fst            :: (a,b) -> a
fst (x,_)       = x

snd            :: (a,b) -> b
snd (_,y)       = y

fst3           :: (a,b,c) -> a
fst3 (x,_,_)    = x

snd3           :: (a,b,c) -> b
snd3 (_,x,_)    = x

thd3           :: (a,b,c) -> c
thd3 (_,_,x)    = x

(.)	       :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x       = f (g x)

flip           :: (a -> b -> c) -> b -> a -> c
flip  f x y     = f y x

($)            :: (a -> b) -> a -> b     -- pronounced as `apply' elsewhere
f $ x           = f x

-- Boolean functions: -------------------------------------------------------

(&&), (||)     :: Bool -> Bool -> Bool
False && x      = False
True  && x      = x

False || x      = x
True  || x      = True

not            :: Bool -> Bool
not True        = False
not False       = True

and, or        :: [Bool] -> Bool
and             = foldr (&&) True
or              = foldr (||) False

any, all       :: (a -> Bool) -> [a] -> Bool
any p           = or  . map p
all p           = and . map p

otherwise      :: Bool
otherwise       = True

-- Character functions: -----------------------------------------------------

primitive ord "primCharToInt" :: Char -> Int
primitive chr "primIntToChar" :: Int -> Char

isAscii, isControl, isPrint, isSpace            :: Char -> Bool
isUpper, isLower, isAlpha, isDigit, isAlphanum  :: Char -> Bool

isAscii c     =  ord c < 128

isControl c   =  c < ' '    ||  c == '\DEL'

isPrint c     =  c >= ' '   &&  c <= '~'

isSpace c     =  c == ' '   || c == '\t'  || c == '\n'  || c == '\r'  ||
                               c == '\f'  || c == '\v'

isUpper c     =  c >= 'A'   &&  c <= 'Z'
isLower c     =  c >= 'a'   &&  c <= 'z'

isAlpha c     =  isUpper c  ||  isLower c
isDigit c     =  c >= '0'   &&  c <= '9'
isAlphanum c  =  isAlpha c  ||  isDigit c


toUpper, toLower      :: Char -> Char

toUpper c | isLower c  = chr (ord c - ord 'a' + ord 'A')
          | otherwise  = c

toLower c | isUpper c  = chr (ord c - ord 'A' + ord 'a')
          | otherwise  = c

minChar, maxChar      :: Char
minChar                = chr 0
maxChar                = chr 255

-- Standard type classes: ---------------------------------------------------

class Eq a where
    (==), (/=) :: a -> a -> Bool
    x /= y      = not (x == y)

class Eq a => Ord a where
    (<), (<=), (>), (>=) :: a -> a -> Bool
    max, min             :: a -> a -> a

    x <  y            = x <= y && x /= y
    x >= y            = y <= x
    x >  y            = y < x

    max x y | x >= y  = x
            | y >= x  = y
    min x y | x <= y  = x
            | y <= x  = y

class Ord a => Ix a where
    range   :: (a,a) -> [a]
    index   :: (a,a) -> a -> Int
    inRange :: (a,a) -> a -> Bool

class Ord a => Enum a where
    enumFrom       :: a -> [a]              -- [n..]
    enumFromThen   :: a -> a -> [a]         -- [n,m..]
    enumFromTo     :: a -> a -> [a]         -- [n..m]
    enumFromThenTo :: a -> a -> a -> [a]    -- [n,n'..m]

    enumFromTo n m        = takeWhile (m>=) (enumFrom n)
    enumFromThenTo n n' m = takeWhile ((if n'>=n then (>=) else (<=)) m)
                                      (enumFromThen n n')

class (Eq a, Text a) => Num a where         -- simplified numeric class
    (+), (-), (*), (/) :: a -> a -> a
    negate             :: a -> a
    fromInteger	       :: Int -> a

-- Type class instances: ----------------------------------------------------

primitive primEqInt    "primEqInt",
	  primLeInt    "primLeInt"   :: Int -> Int -> Bool
primitive primPlusInt  "primPlusInt",
	  primMinusInt "primMinusInt",
	  primDivInt   "primDivInt",
	  primMulInt   "primMulInt"  :: Int -> Int -> Int
primitive primNegInt   "primNegInt"  :: Int -> Int

instance Eq ()  where () == () = True
instance Ord () where () <= () = True

instance Eq Int  where (==) = primEqInt

instance Ord Int where (<=) = primLeInt

instance Ix Int where
    range (m,n)      = [m..n]
    index b@(m,n) i
       | inRange b i = i - m
       | otherwise   = error "index out of range"
    inRange (m,n) i  = m <= i && i <= n

instance Enum Int where
    enumFrom n       = iterate (1+) n
    enumFromThen n m = iterate ((m-n)+) n

instance Num Int where
    (+)           = primPlusInt
    (-)           = primMinusInt
    (*)           = primMulInt
    (/)           = primDivInt
    negate        = primNegInt
    fromInteger x = x

{- PC version off -}
primitive primEqFloat    "primEqFloat",
          primLeFloat    "primLeFloat"    :: Float -> Float -> Bool
primitive primPlusFloat  "primPlusFloat", 
          primMinusFloat "primMinusFloat", 
          primDivFloat   "primDivFloat",
          primMulFloat   "primMulFloat"   :: Float -> Float -> Float 
primitive primNegFloat   "primNegFloat"   :: Float -> Float
primitive primIntToFloat "primIntToFloat" :: Int -> Float

instance Eq Float where (==) = primEqFloat

instance Ord Float where (<=) = primLeFloat

instance Enum Float where
    enumFrom n       = iterate (1.0+) n
    enumFromThen n m = iterate ((m-n)+) n

instance Num Float where
    (+)         = primPlusFloat
    (-)         = primMinusFloat
    (*)         = primMulFloat
    (/)         = primDivFloat 
    negate      = primNegFloat
    fromInteger = primIntToFloat

primitive sin "primSinFloat",  asin  "primAsinFloat",
          cos "primCosFloat",  acos  "primAcosFloat",
	  tan "primTanFloat",  atan  "primAtanFloat",
          log "primLogFloat",  log10 "primLog10Float",
	  exp "primExpFloat",  sqrt  "primSqrtFloat" :: Float -> Float
primitive atan2    "primAtan2Float" :: Float -> Float -> Float
primitive truncate "primFloatToInt" :: Float -> Int

pi :: Float
pi  = 3.1415926535

{- PC version on -}

primitive primEqChar   "primEqChar",
	  primLeChar   "primLeChar"  :: Char -> Char -> Bool

instance Eq Char  where (==) = primEqChar   -- c == d  =  ord c == ord d

instance Ord Char where (<=) = primLeChar   -- c <= d  =  ord c <= ord d

instance Ix Char where
    range (c,c')      = [c..c']
    index b@(m,n) i
       | inRange b i  = ord i - ord m
       | otherwise    = error "index out of range"
    inRange (c,c') ci = ord c <= i && i <= ord c' where i = ord ci

instance Enum Char where
    enumFrom c        = map chr [ord c .. ord maxChar]
    enumFromThen c c' = map chr [ord c, ord c' .. ord lastChar]
                        where lastChar = if c' < c then minChar else maxChar

instance Eq a => Eq [a] where
    []     == []     =  True
    []     == (y:ys) =  False
    (x:xs) == []     =  False
    (x:xs) == (y:ys) =  x==y && xs==ys

instance Ord a => Ord [a] where
    []     <= _      =  True
    (_:_)  <= []     =  False
    (x:xs) <= (y:ys) =  x<y || (x==y && xs<=ys)

instance (Eq a, Eq b) => Eq (a,b) where
    (x,y) == (u,v)  =  x==u && y==v

instance (Ord a, Ord b) => Ord (a,b) where
    (x,y) <= (u,v)  = x<u  ||  (x==u && y<=v)

instance Eq Bool where
    True  == True   =  True
    False == False  =  True
    _     == _      =  False

instance Ord Bool where
    False <= x      = True
    True  <= x      = x

-- Standard numerical functions: --------------------------------------------

primitive div    "primDivInt",
	  quot   "primQuotInt",
          rem    "primRemInt",
          mod    "primModInt"    :: Int -> Int -> Int

subtract  :: Num a => a -> a -> a
subtract   = flip (-)

even, odd :: Int -> Bool
even x     = x `rem` 2 == 0
odd        = not . even

gcd       :: Int -> Int -> Int
gcd x y    = gcd' (abs x) (abs y)
             where gcd' x 0 = x
                   gcd' x y = gcd' y (x `rem` y)

lcm       :: Int -> Int -> Int
lcm _ 0    = 0
lcm 0 _    = 0
lcm x y    = abs ((x `quot` gcd x y) * y)

(^)       :: Num a => a -> Int -> a
x ^ 0      = fromInteger 1
x ^ (n+1)  = f x n x
             where f _ 0 y = y
                   f x n y = g x n where
                             g x n | even n    = g (x*x) (n`quot`2)
                                   | otherwise = f x (n-1) (x*y)

abs                     :: (Num a, Ord a) => a -> a
abs x | x>=fromInteger 0 = x
      | otherwise        = -x

signum			:: (Num a, Ord a) => a -> Int
signum x
      | x==fromInteger 0 = 0
      | x> fromInteger 0 = 1
      | otherwise        = -1

sum, product    :: Num a => [a] -> a
sum              = foldl' (+) (fromInteger 0)
product          = foldl' (*) (fromInteger 1)

sums, products	:: Num a => [a] -> [a]
sums             = scanl (+) (fromInteger 0)
products         = scanl (*) (fromInteger 1)

-- Constructor classes: -----------------------------------------------------

class Functor f where
    map :: (a -> b) -> (f a -> f b)

class Functor m => Monad m where
    result    :: a -> m a
    join      :: m (m a) -> m a
    bind      :: m a -> (a -> m b) -> m b

    join x     = bind x id
    x `bind` f = join (map f x)

class Monad m => Monad0 m where
    zero   :: m a

class Monad0 c => MonadPlus c where
    (++) :: c a -> c a -> c a

class (Functor left, Functor right) => Adjoint left right where
    univ    :: (a -> right b) -> (left a -> b)
    unit    :: a -> right (left a)
    couniv  :: (left a -> b) -> (a -> right b)
    counit  :: left (right a) -> a

    unit     = couniv id
    counit   = univ id
    univ g   = counit . map g
    couniv g = map g . unit

class (Functor f, Functor g) => NatTransf f g where
    eta :: f a -> g a

-- Monad based utilities: ---------------------------------------------------

apply            :: Monad m => (a -> m b) -> (m a -> m b)
apply             = flip bind

(@@)             :: Monad m => (a -> m b) -> (c -> m a) -> (c -> m b)
f @@ g            = join . map f . g

concat		 :: MonadPlus c => [c a] -> c a
concat		  = foldr (++) zero

filter		 :: Monad0 m => (a -> Bool) -> m a -> m a
filter p xs       = [ x | x<-xs, p x ]

mfoldl           :: Monad m => (a -> b -> m a) -> a -> [b] -> m a
mfoldl f a []     = result a
mfoldl f a (x:xs) = f a x `bind` (\fax -> mfoldl f fax xs)

mfoldr           :: Monad m => (a -> b -> m b) -> b -> [a] -> m b
mfoldr f a []     = result a
mfoldr f a (x:xs) = mfoldr f a xs `bind` (\y -> f x y)

mapl             :: Monad m => (a -> m b) -> ([a] -> m [b])
mapl f []         = [ [] ]
mapl f (x:xs)     = [ y:ys | y <- f x, ys <- mapl f xs ]

mapr             :: Monad m => (a -> m b) -> ([a] -> m [b])
mapr f []         = [ [] ]
mapr f (x:xs)     = [ y:ys | ys <- mapr f xs, y <- f x ]

-- The monad of lists: ------------------------------------------------------

instance Functor   [] where map f []     = []
			    map f (x:xs) = f x : map f xs

instance Monad     [] where result x        = [x]
			    []     `bind` f = []
			    (x:xs) `bind` f = f x ++ (xs `bind` f)

instance Monad0    [] where zero         = []

instance MonadPlus [] where []     ++ ys = ys
			    (x:xs) ++ ys = x : (xs ++ ys)

-- Standard list processing functions: --------------------------------------

head             :: [a] -> a
head (x:_)        = x

last             :: [a] -> a
last [x]          = x
last (_:xs)       = last xs

tail             :: [a] -> [a]
tail (_:xs)       = xs

init             :: [a] -> [a]
init [x]          = []
init (x:xs)       = x : init xs

genericLength    :: Num a => [b] -> a    -- calculate length of list
genericLength     = foldl' (\n _ -> n + fromInteger 1) (fromInteger 0)

length		 :: [a] -> Int
length            = foldl' (\n _ -> n + 1) 0

(!!)             :: [a] -> Int -> a      -- xs!!n selects the nth element of
(x:_)  !! 0       = x                    -- the list xs (first element xs!!0)
(_:xs) !! (n+1)   = xs !! n              -- for any n < length xs.

iterate          :: (a -> a) -> a -> [a] -- generate the infinite list
iterate f x       = x : iterate f (f x)  -- [x, f x, f (f x), ...

repeat           :: a -> [a]             -- generate the infinite list
repeat x          = xs where xs = x:xs   -- [x, x, x, x, ...

cycle            :: [a] -> [a]           -- generate the infinite list
cycle xs          = xs' where xs'=xs++xs'-- xs ++ xs ++ xs ++ ...

copy             :: Int -> a -> [a]      -- make list of n copies of x
copy n x          = take n xs where xs = x:xs

nub              :: Eq a => [a] -> [a]   -- remove duplicates from list
nub []            = []
nub (x:xs)        = x : nub (filter (x/=) xs)

reverse          :: [a] -> [a]           -- reverse elements of list
reverse           = foldl (flip (:)) []

elem, notElem    :: Eq a => a -> [a] -> Bool
elem              = any . (==)           -- test for membership in list
notElem           = all . (/=)           -- test for non-membership

maximum, minimum :: Ord a => [a] -> a
maximum           = foldl1 max          -- max element in non-empty list
minimum           = foldl1 min          -- min element in non-empty list

transpose        :: [[a]] -> [[a]]      -- transpose list of lists
transpose         = foldr
                      (\xs xss -> zipWith (:) xs (xss ++ repeat []))
                      []

-- null provides a simple and efficient way of determining whether a given
-- list is empty, without using (==) and hence avoiding a constraint of the
-- form Eq [a].

null             :: [a] -> Bool
null []           = True
null (_:_)        = False

-- (\\) is used to remove the first occurrence of each element in the second
-- list from the first list.  It is a kind of inverse of (++) in the sense
-- that  (xs ++ ys) \\ xs = ys for any finite list xs of proper values xs.

(\\)             :: Eq a => [a] -> [a] -> [a]
(\\)              = foldl del
                    where []     `del` _  = []
                          (x:xs) `del` y
                             | x == y     = xs
                             | otherwise  = x : xs `del` y

-- Fold primitives:  The foldl and scanl functions, variants foldl1 and
-- scanl1 for non-empty lists, and strict variants foldl' scanl' describe
-- common patterns of recursion over lists.  Informally:
--
--  foldl f a [x1, x2, ..., xn]  = f (...(f (f a x1) x2)...) xn
--                               = (...((a `f` x1) `f` x2)...) `f` xn
-- etc...
--
-- The functions foldr, scanr and variants foldr1, scanr1 are duals of these
-- functions:
-- e.g.  foldr f a xs = foldl (flip f) a (reverse xs)  for finite lists xs.

foldl            :: (a -> b -> a) -> a -> [b] -> a
foldl f z []      = z
foldl f z (x:xs)  = foldl f (f z x) xs

foldl1           :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs)   = foldl f x xs

foldl'           :: (a -> b -> a) -> a -> [b] -> a
foldl' f a []     =  a
foldl' f a (x:xs) =  strict (foldl' f) (f a x) xs

scanl            :: (a -> b -> a) -> a -> [b] -> [a]
scanl f q xs      = q : (case xs of
                         []   -> []
                         x:xs -> scanl f (f q x) xs)

scanl1           :: (a -> a -> a) -> [a] -> [a]
scanl1 f (x:xs)   = scanl f x xs

scanl'           :: (a -> b -> a) -> a -> [b] -> [a]
scanl' f q xs     = q : (case xs of
                         []   -> []
                         x:xs -> strict (scanl' f) (f q x) xs)

foldr            :: (a -> b -> b) -> b -> [a] -> b
foldr f z []      = z
foldr f z (x:xs)  = f x (foldr f z xs)

foldr1           :: (a -> a -> a) -> [a] -> a
foldr1 f [x]      = x
foldr1 f (x:xs)   = f x (foldr1 f xs)

scanr            :: (a -> b -> b) -> b -> [a] -> [b]
scanr f q0 []     = [q0]
scanr f q0 (x:xs) = f x q : qs
                    where qs@(q:_) = scanr f q0 xs

scanr1           :: (a -> a -> a) -> [a] -> [a]
scanr1 f [x]      = [x]
scanr1 f (x:xs)   = f x q : qs
                    where qs@(q:_) = scanr1 f xs

-- List breaking functions:
--
--   take n xs       returns the first n elements of xs
--   drop n xs       returns the remaining elements of xs
--   splitAt n xs    = (take n xs, drop n xs)
--
--   takeWhile p xs  returns the longest initial segment of xs whose
--                   elements satisfy p
--   dropWhile p xs  returns the remaining portion of the list
--   span p xs       = (takeWhile p xs, dropWhile p xs)
--
--   takeUntil p xs  returns the list of elements upto and including the
--                   first element of xs which satisfies p

take                :: Int -> [a] -> [a]
take 0     _         = []
take _     []        = []
take (n+1) (x:xs)    = x : take n xs

drop                :: Int -> [a] -> [a]
drop 0     xs        = xs
drop _     []        = []
drop (n+1) (_:xs)    = drop n xs

splitAt             :: Int -> [a] -> ([a], [a])
splitAt 0     xs     = ([],xs)
splitAt _     []     = ([],[])
splitAt (n+1) (x:xs) = (x:xs',xs'') where (xs',xs'') = splitAt n xs

takeWhile           :: (a -> Bool) -> [a] -> [a]
takeWhile p []       = []
takeWhile p (x:xs)
         | p x       = x : takeWhile p xs
         | otherwise = []

takeUntil           :: (a -> Bool) -> [a] -> [a]
takeUntil p []       = []
takeUntil p (x:xs)
       | p x         = [x]
       | otherwise   = x : takeUntil p xs

dropWhile           :: (a -> Bool) -> [a] -> [a]
dropWhile p []       = []
dropWhile p xs@(x:xs')
         | p x       = dropWhile p xs'
         | otherwise = xs

span, break         :: (a -> Bool) -> [a] -> ([a],[a])
span p []            = ([],[])
span p xs@(x:xs')
         | p x       = let (ys,zs) = span p xs' in (x:ys,zs)
         | otherwise = ([],xs)
break p              = span (not . p)

-- Text processing:
--   lines s     returns the list of lines in the string s.
--   words s     returns the list of words in the string s.
--   unlines ls  joins the list of lines ls into a single string
--               with lines separated by newline characters.
--   unwords ws  joins the list of words ws into a single string
--               with words separated by spaces.

lines     :: String -> [String]
lines ""   = []
lines s    = l : (if null s' then [] else lines (tail s'))
             where (l, s') = break ('\n'==) s

words     :: String -> [String]
words s    = case dropWhile isSpace s of
                  "" -> []
                  s' -> w : words s''
                        where (w,s'') = break isSpace s'

unlines   :: [String] -> String
unlines    = concat . map (\l -> l ++ "\n")

unwords   :: [String] -> String
unwords [] = []
unwords ws = foldr1 (\w s -> w ++ ' ':s) ws

-- Merging and sorting lists:

merge               :: Ord a => [a] -> [a] -> [a] 
merge []     ys      = ys
merge xs     []      = xs
merge (x:xs) (y:ys)
        | x <= y     = x : merge xs (y:ys)
        | otherwise  = y : merge (x:xs) ys

sort                :: Ord a => [a] -> [a]
sort                 = foldr insert []

insert              :: Ord a => a -> [a] -> [a]
insert x []          = [x]
insert x (y:ys)
        | x <= y     = x:y:ys
        | otherwise  = y:insert x ys

qsort               :: Ord a => [a] -> [a]
qsort []             = []
qsort (x:xs)         = qsort [ u | u<-xs, u<x ] ++
                             [ x ] ++
                       qsort [ u | u<-xs, u>=x ]

-- zip and zipWith families of functions:

zip  :: [a] -> [b] -> [(a,b)]
zip   = zipWith  (\a b -> (a,b))

zip3 :: [a] -> [b] -> [c] -> [(a,b,c)]
zip3  = zipWith3 (\a b c -> (a,b,c))

zip4 :: [a] -> [b] -> [c] -> [d] -> [(a,b,c,d)]
zip4  = zipWith4 (\a b c d -> (a,b,c,d))

zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a,b,c,d,e)]
zip5  = zipWith5 (\a b c d e -> (a,b,c,d,e))

zip6 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [(a,b,c,d,e,f)]
zip6  = zipWith6 (\a b c d e f -> (a,b,c,d,e,f))

zip7 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g] -> [(a,b,c,d,e,f,g)]
zip7  = zipWith7 (\a b c d e f g -> (a,b,c,d,e,f,g))


zipWith                  :: (a->b->c) -> [a]->[b]->[c]
zipWith z (a:as) (b:bs)   = z a b : zipWith z as bs
zipWith _ _      _        = []

zipWith3                 :: (a->b->c->d) -> [a]->[b]->[c]->[d]
zipWith3 z (a:as) (b:bs) (c:cs)
                          = z a b c : zipWith3 z as bs cs
zipWith3 _ _ _ _          = []

zipWith4                 :: (a->b->c->d->e) -> [a]->[b]->[c]->[d]->[e]
zipWith4 z (a:as) (b:bs) (c:cs) (d:ds)
                          = z a b c d : zipWith4 z as bs cs ds
zipWith4 _ _ _ _ _        = []

zipWith5                 :: (a->b->c->d->e->f) -> [a]->[b]->[c]->[d]->[e]->[f]
zipWith5 z (a:as) (b:bs) (c:cs) (d:ds) (e:es)
                          = z a b c d e : zipWith5 z as bs cs ds es
zipWith5 _ _ _ _ _ _      = []

zipWith6                 :: (a->b->c->d->e->f->g)
                            -> [a]->[b]->[c]->[d]->[e]->[f]->[g]
zipWith6 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs)
                          = z a b c d e f : zipWith6 z as bs cs ds es fs
zipWith6 _ _ _ _ _ _ _    = []

zipWith7                 :: (a->b->c->d->e->f->g->h)
                             -> [a]->[b]->[c]->[d]->[e]->[f]->[g]->[h]
zipWith7 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs)
                          = z a b c d e f g : zipWith7 z as bs cs ds es fs gs
zipWith7 _ _ _ _ _ _ _ _  = []

unzip                    :: [(a,b)] -> ([a],[b])
unzip                     = foldr (\(a,b) ~(as,bs) -> (a:as, b:bs)) ([], [])

-- Formatted output: --------------------------------------------------------

primitive primPrint "primPrint"  :: Int -> a -> String -> String

show'       :: a -> String
show' x      = primPrint 0 x []

cjustify, ljustify, rjustify :: Int -> String -> String

cjustify n s = space halfm ++ s ++ space (m - halfm)
               where m     = n - length s
                     halfm = m `div` 2
ljustify n s = s ++ space (n - length s)
rjustify n s = space (n - length s) ++ s

space       :: Int -> String
space n      = copy n ' '

layn        :: [String] -> String
layn         = lay 1 where lay _ []     = []
                           lay n (x:xs) = rjustify 4 (show n) ++ ") "
                                           ++ x ++ "\n" ++ lay (n+1) xs

-- Miscellaneous: -----------------------------------------------------------

until                  :: (a -> Bool) -> (a -> a) -> a -> a
until p f x | p x       = x
            | otherwise = until p f (f x)

until'                 :: (a -> Bool) -> (a -> a) -> a -> [a]
until' p f              = takeUntil p . iterate f

primitive error "primError" :: String -> a

undefined              :: a
undefined | False       = undefined

asTypeOf               :: a -> a -> a
x `asTypeOf` _          = x

-- A trimmed down version of the Haskell Text class: ------------------------

type  ShowS   = String -> String

class Text a where 
    showsPrec      :: Int -> a -> ShowS
    showList       :: [a] -> ShowS

    showsPrec       = primPrint
    showList []     = showString "[]"
    showList (x:xs) = showChar '[' . shows x . showl xs
                      where showl []     = showChar ']'
                            showl (x:xs) = showChar ',' . shows x . showl xs

shows      :: Text a => a -> ShowS
shows       = showsPrec 0

show       :: Text a => a -> String
show x      = shows x ""

showChar   :: Char -> ShowS
showChar    = (:)

showString :: String -> ShowS
showString  = (++)

instance Text () where
    showsPrec d ()    = showString "()"

instance Text Bool where
    showsPrec d True  = showString "True"
    showsPrec d False = showString "False"

primitive primShowsInt "primShowsInt" :: Int -> Int -> String -> String
instance Text Int where showsPrec = primShowsInt

{- PC version off -}
primitive primShowsFloat "primShowsFloat" :: Int -> Float -> String -> String
instance Text Float where showsPrec = primShowsFloat
{- PC version on -}

instance Text Char where
    showsPrec p c = showString [q, c, q] where q = '\''
    showList cs   = showChar '"' . showl cs
                    where showl ""       = showChar '"'
                          showl ('"':cs) = showString "\\\"" . showl cs
                          showl (c:cs)   = showChar c . showl cs
			  -- Haskell has   showLitChar c . showl cs

instance Text a => Text [a]  where
    showsPrec p = showList

instance (Text a, Text b) => Text (a,b) where
    showsPrec p (x,y) = showChar '(' . shows x . showChar ',' .
                                       shows y . showChar ')'

-- (Dialogue functions removed) --------------------------------------------

primitive primFopen "primFopen" :: String -> a -> (String -> a) -> a

openfile        :: String -> String
openfile f       = primFopen f (error ("can't open file "++f)) id

-- End of Gofer standard prelude --------------------------------------------

----------------------------------------------------------------------
-- Basic extensions

--------------------------------------------------------------------------
-- General Functions
 
-- numbers

numval :: String -> Int
numval (' ':xs) = numval xs
numval ('+':xs) = numval xs
numval ('-':xs) = - (numval xs)
numval xs       = foldl (\n x -> 10 * n + ord x - ord '0') 0 xs

-- strings

infix 4 `isPrefix`, `isRealPrefix`

isPrefix :: Eq a => [a] -> [a] -> Bool
[]    `isPrefix` _     = True
(a:s) `isPrefix` (b:t) = a == b && s `isPrefix` t
_     `isPrefix` []    = False

isRealPrefix :: Eq a => [a] -> [a] -> Bool
_     `isRealPrefix` []    = False
(a:s) `isRealPrefix` (b:t) = a == b && s `isRealPrefix` t
[]    `isRealPrefix` _     = True

-- self

self :: (a -> a -> b) -> a -> b
self f x = f x x

-- grouping

groupn :: Int -> [a] -> [[a]]
groupn n = takeWhile (not.null) . map (take n) . iterate (drop n)

--------------------------------------------------------------------------
-- General Monadic Functions
 

done :: Monad m => m ()
done = result ()
 
infixr 1 ==>

(==>) :: Monad m => m Bool -> m a -> m ()
b ==> a = do { c <- b; if c then void a else done }
 
seq :: Monad m => m a -> m b -> m b
seq am bm = do { am; bm }

void :: Monad m => m a -> m ()
void m = do { m; done }
 
binds :: Monad m => [m a] -> m [a]
binds = mapl id

seqs :: Monad m => [m ()] -> m ()
seqs = foldr seq done

exitM :: Monad m => String -> m a
exitM s = error (copy 15 '\b' ++ s ++ copy (max 0 (15 - length s)) ' ')

ifM :: Monad m => Bool -> m () -> m ()
ifM b m = if b then m else done

--------------------------------------------------------------------------
-- type Maybe

data Maybe a = Just a | Nothing

instance Functor Maybe where
  map f (Just a) = Just (f a)
  map f Nothing  = Nothing

instance Monad Maybe where
  result a = Just a
  Just a  `bind` k = k a
  Nothing `bind` k = Nothing

instance Monad0 Maybe where
  zero = Nothing

instance MonadPlus Maybe where
  Nothing ++ m = m
  m       ++ _ = m

maybe :: (a -> c) -> c -> Maybe a -> c
maybe just nothing (Just a) = just a
maybe just nothing Nothing  = nothing

--------------------------------------------------------------------------
-- type Either

data Either a b = Left a | Right b

either :: (a -> c) -> (b -> c) -> Either a b -> c
either left right (Left a)  = left a
either left right (Right b) = right b

--------------------------------------------------------------------------
-- type RoseTree

data RoseTree a = Rose a [RoseTree a]

instance Functor RoseTree where
  map f (Rose a ts) = Rose (f a) (map (map f) ts)

roseTree :: (a -> [b] -> b) -> RoseTree a -> b
roseTree f (Rose a rs) = f a (map (roseTree f) rs)

--------------------------------------------------------------------------
-- IO monad

primitive bindIO       "primIOBind"    :: IO a -> (a -> IO b) -> IO b
primitive resultIO     "primSTReturn"  :: a -> ST s a
primitive primGetCh    "primIOGetch"   :: IO Char
primitive primPutChar  "primIOPutchar" :: Char -> IO ()
primitive interleaveIO "primSTInter" :: IO a -> IO a


instance Monad IO where
  bind   = bindIO
  result = resultIO

instance Monad0 IO where
  zero = error "Pattern match failed in IO-monad."

instance Functor IO where
  map f m = [ f x | x <- m ]

class Monad m => IOMonad m where
  getCh       :: m Char
  getContents :: m String

  getChar :: m Char
  getChar = do c <- getCh; putChar c; result c

  putChar :: Char -> m ()
  putChar c = putStr [c]
  
  putStr  :: String -> m ()
  putStr s = seqs [ putChar c | c <- s ]
  
instance IOMonad IO where
  getCh   = primGetCh
  putChar = primPutChar

  getContents = interleaveIO $
    do c <- getCh
       s <- getContents
       result (c:s)

print :: (Text a, IOMonad m) => a -> m ()
print x = putStrLn (show x)

putStrLn :: IOMonad m => String -> m ()
putStrLn s = do putStr s; putChar '\n'

getLine :: IOMonad m => m String
getLine  = do c <- getChar
              if c=='\n' then result ""
			 else do cs <- getLine
				 result (c:cs)

interact :: IOMonad m => (String -> String) -> m ()
interact f = do s <- getContents; putStr (f s)

--------------------------------------------------------------------------
-- MutVar's

type Var a = MutVar RealWorld a
  in newVar, readVar, writeVar, eqVar

primitive newVar   "primSTNew"      :: a -> IO (Var a)
primitive readVar  "primSTDeref"    :: Var a -> IO a
primitive writeVar "primSTAssign"   :: Var a -> a -> IO ()
primitive eqVar    "primSTMutVarEq" :: Var a -> Var a -> Bool

newVar' :: IO (Var a)
newVar' = newVar undefined

updateVar :: (a -> a) -> Var a -> IO ()
updateVar f var = do { a <- readVar var; writeVar var (f a) }

instance Eq (Var a) where
  (==) = eqVar

--------------------------------------------------------------------------
-- MutArr's

primitive primSTNewArr   "primSTNewArr"
          :: (a -> Int) -> (a,a) -> b -> ST s (MutArr s a b)
primitive primSTReadArr  "primSTReadArr"
          :: ((a,a) -> a -> Int) -> MutArr s a b -> a -> ST s b
primitive primSTWriteArr "primSTWriteArr"
          :: ((a,a) -> a -> Int) -> MutArr s a b -> a -> b -> ST s ()

type LArray a b = MutArr RealWorld a b
  in newArr, readArr, writeArr

newArr   :: Ix a => (a,a) -> b -> IO (LArray a b)
readArr  :: Ix a => LArray a b -> a -> IO b 
writeArr :: Ix a => LArray a b -> a -> b -> IO ()

newArr bounds c  = primSTNewArr (index bounds) bounds c
readArr arr i    = primSTReadArr index arr i
writeArr arr i x = primSTWriteArr index arr i x

--------------------------------------------------------------------------
-- Heap

type HeapPtr = Int
  in showPtr, readPtr
   , newHeap, heapAlloc, heapWrite, heapFree, heapFilter, heapRead 

type Heap a = (LArray HeapPtr (Maybe a), Var (HeapPtr, [HeapPtr]))
  in newHeap, heapAlloc, heapWrite, heapFree, heapFilter, heapRead

newHeap :: Int -> IO (Heap a)
newHeap size =
  do heap <- newArr (1,size) Nothing
     free <- newVar (0 :: HeapPtr, [1..size] :: [HeapPtr])
     result (heap, free)

heapAlloc :: Heap a -> a -> IO HeapPtr
heapAlloc (arr, free) a =
  do (last, ptrs) <- readVar free
     case ptrs of
       []       -> error "Heap is full"
       (p:ptrs) -> do x <- readArr arr p
                      case x of
                        Nothing -> done
                        Just _  -> error "Full HeapCell reallocated"
                      writeArr arr p (Just a)
                      writeVar free (max p last, ptrs)
                      result p

heapWrite :: Heap a -> HeapPtr -> a -> IO ()
heapWrite (arr, free) ptr a =
  do ma <- readArr arr ptr
     case ma of
       Just _  -> writeArr arr ptr (Just a)
       Nothing -> error "Writing to an unallocated Heapcell"

heapFree :: Heap a -> HeapPtr -> IO ()
heapFree (arr, free) ptr =
  do writeArr arr ptr Nothing
     (last, ptrs) <- readVar free
     if ptr == last then
       writeVar free (last-1, ptr:ptrs)
      else
       writeVar free (last, ptr:ptrs)

heapRead :: Heap a -> HeapPtr -> IO a
heapRead (arr, free) ptr =
  do ma <- readArr arr ptr
     case ma of
       Just a  -> result a
       Nothing -> error "Reading an unallocated HeapCell"

heapFilter :: Heap a -> (a -> Bool) -> IO ()
heapFilter (arr, free) pred =
  do (last, ptrs)  <- readVar free
     (last',ptrs') <- doAll [1..last] (0,ptrs)
     writeVar free (last', ptrs')
 where
  doAll []     (last,ptrs) = result (last,ptrs)
  doAll (p:ps) (last,ptrs) =
    do ma <- readArr arr p
       case ma of
         Just a | pred a    -> do doAll ps (p,ptrs)
                | otherwise -> do writeArr arr p Nothing
                                  doAll ps (last,p:ptrs)
         Nothing            -> do doAll ps (last,ptrs)

showPtr :: HeapPtr -> String
showPtr p = 'p':show p

readPtr :: String -> HeapPtr
readPtr ('p':s) = numval s

instance Text HeapPtr where
  showsPrec _ p = showString (showPtr p)

--------------------------------------------------------------------------
-- type Dyn

data Dyn = Dyn

fromDyn :: Dyn -> a
fromDyn = typeCast

toDyn :: a -> Dyn
toDyn = typeCast

primitive primCast "primStrict" :: (a -> a) -> a -> b

typeCast :: a -> b
typeCast = primCast id

--------------------------------------------------------------------------
-- the end.