1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
|
----------------------------------------------------------------------
-- TkGofer v. 2.0
-- Ton Vullinghs, Koen Claessen, July 1997
----------------------------------------------------------------------
-- prelude.gs
-- The majority of this file is taken from the Gofer cc prelude:
-- __________ __________ __________ __________ ________
-- / _______/ / ____ / / _______/ / _______/ / ____ \
-- / / _____ / / / / / /______ / /______ / /___/ /
-- / / /_ / / / / / / _______/ / _______/ / __ __/
-- / /___/ / / /___/ / / / / /______ / / \ \
-- /_________/ /_________/ /__/ /_________/ /__/ \__\
--
-- Functional programming environment, Version 2.30
-- Copyright Mark P Jones 1991-1994.
help = "press :? for a list of commands"
-- Operator precedence table: -----------------------------------------------
infixl 9 !!
infixr 9 ., @@
infixr 8 ^
infixl 7 *
infix 7 /, `div`, `quot`, `rem`, `mod`
infixl 6 +, -
infix 5 \\
infixr 5 ++, :
infix 4 ==, /=, <, <=, >=, >
infix 4 `elem`, `notElem`
infixr 3 &&
infixr 2 ||
infixr 0 $
-- Standard combinators: ----------------------------------------------------
primitive strict "primStrict" :: (a -> b) -> a -> b
const :: a -> b -> a
const k x = k
id :: a -> a
id x = x
curry :: ((a,b) -> c) -> a -> b -> c
curry f a b = f (a,b)
uncurry :: (a -> b -> c) -> (a,b) -> c
uncurry f (a,b) = f a b
fst :: (a,b) -> a
fst (x,_) = x
snd :: (a,b) -> b
snd (_,y) = y
fst3 :: (a,b,c) -> a
fst3 (x,_,_) = x
snd3 :: (a,b,c) -> b
snd3 (_,x,_) = x
thd3 :: (a,b,c) -> c
thd3 (_,_,x) = x
(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)
flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x
($) :: (a -> b) -> a -> b -- pronounced as `apply' elsewhere
f $ x = f x
-- Boolean functions: -------------------------------------------------------
(&&), (||) :: Bool -> Bool -> Bool
False && x = False
True && x = x
False || x = x
True || x = True
not :: Bool -> Bool
not True = False
not False = True
and, or :: [Bool] -> Bool
and = foldr (&&) True
or = foldr (||) False
any, all :: (a -> Bool) -> [a] -> Bool
any p = or . map p
all p = and . map p
otherwise :: Bool
otherwise = True
-- Character functions: -----------------------------------------------------
primitive ord "primCharToInt" :: Char -> Int
primitive chr "primIntToChar" :: Int -> Char
isAscii, isControl, isPrint, isSpace :: Char -> Bool
isUpper, isLower, isAlpha, isDigit, isAlphanum :: Char -> Bool
isAscii c = ord c < 128
isControl c = c < ' ' || c == '\DEL'
isPrint c = c >= ' ' && c <= '~'
isSpace c = c == ' ' || c == '\t' || c == '\n' || c == '\r' ||
c == '\f' || c == '\v'
isUpper c = c >= 'A' && c <= 'Z'
isLower c = c >= 'a' && c <= 'z'
isAlpha c = isUpper c || isLower c
isDigit c = c >= '0' && c <= '9'
isAlphanum c = isAlpha c || isDigit c
toUpper, toLower :: Char -> Char
toUpper c | isLower c = chr (ord c - ord 'a' + ord 'A')
| otherwise = c
toLower c | isUpper c = chr (ord c - ord 'A' + ord 'a')
| otherwise = c
minChar, maxChar :: Char
minChar = chr 0
maxChar = chr 255
-- Standard type classes: ---------------------------------------------------
class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)
class Eq a => Ord a where
(<), (<=), (>), (>=) :: a -> a -> Bool
max, min :: a -> a -> a
x < y = x <= y && x /= y
x >= y = y <= x
x > y = y < x
max x y | x >= y = x
| y >= x = y
min x y | x <= y = x
| y <= x = y
class Ord a => Ix a where
range :: (a,a) -> [a]
index :: (a,a) -> a -> Int
inRange :: (a,a) -> a -> Bool
class Ord a => Enum a where
enumFrom :: a -> [a] -- [n..]
enumFromThen :: a -> a -> [a] -- [n,m..]
enumFromTo :: a -> a -> [a] -- [n..m]
enumFromThenTo :: a -> a -> a -> [a] -- [n,n'..m]
enumFromTo n m = takeWhile (m>=) (enumFrom n)
enumFromThenTo n n' m = takeWhile ((if n'>=n then (>=) else (<=)) m)
(enumFromThen n n')
class (Eq a, Text a) => Num a where -- simplified numeric class
(+), (-), (*), (/) :: a -> a -> a
negate :: a -> a
fromInteger :: Int -> a
-- Type class instances: ----------------------------------------------------
primitive primEqInt "primEqInt",
primLeInt "primLeInt" :: Int -> Int -> Bool
primitive primPlusInt "primPlusInt",
primMinusInt "primMinusInt",
primDivInt "primDivInt",
primMulInt "primMulInt" :: Int -> Int -> Int
primitive primNegInt "primNegInt" :: Int -> Int
instance Eq () where () == () = True
instance Ord () where () <= () = True
instance Eq Int where (==) = primEqInt
instance Ord Int where (<=) = primLeInt
instance Ix Int where
range (m,n) = [m..n]
index b@(m,n) i
| inRange b i = i - m
| otherwise = error "index out of range"
inRange (m,n) i = m <= i && i <= n
instance Enum Int where
enumFrom n = iterate (1+) n
enumFromThen n m = iterate ((m-n)+) n
instance Num Int where
(+) = primPlusInt
(-) = primMinusInt
(*) = primMulInt
(/) = primDivInt
negate = primNegInt
fromInteger x = x
{- PC version off -}
primitive primEqFloat "primEqFloat",
primLeFloat "primLeFloat" :: Float -> Float -> Bool
primitive primPlusFloat "primPlusFloat",
primMinusFloat "primMinusFloat",
primDivFloat "primDivFloat",
primMulFloat "primMulFloat" :: Float -> Float -> Float
primitive primNegFloat "primNegFloat" :: Float -> Float
primitive primIntToFloat "primIntToFloat" :: Int -> Float
instance Eq Float where (==) = primEqFloat
instance Ord Float where (<=) = primLeFloat
instance Enum Float where
enumFrom n = iterate (1.0+) n
enumFromThen n m = iterate ((m-n)+) n
instance Num Float where
(+) = primPlusFloat
(-) = primMinusFloat
(*) = primMulFloat
(/) = primDivFloat
negate = primNegFloat
fromInteger = primIntToFloat
primitive sin "primSinFloat", asin "primAsinFloat",
cos "primCosFloat", acos "primAcosFloat",
tan "primTanFloat", atan "primAtanFloat",
log "primLogFloat", log10 "primLog10Float",
exp "primExpFloat", sqrt "primSqrtFloat" :: Float -> Float
primitive atan2 "primAtan2Float" :: Float -> Float -> Float
primitive truncate "primFloatToInt" :: Float -> Int
pi :: Float
pi = 3.1415926535
{- PC version on -}
primitive primEqChar "primEqChar",
primLeChar "primLeChar" :: Char -> Char -> Bool
instance Eq Char where (==) = primEqChar -- c == d = ord c == ord d
instance Ord Char where (<=) = primLeChar -- c <= d = ord c <= ord d
instance Ix Char where
range (c,c') = [c..c']
index b@(m,n) i
| inRange b i = ord i - ord m
| otherwise = error "index out of range"
inRange (c,c') ci = ord c <= i && i <= ord c' where i = ord ci
instance Enum Char where
enumFrom c = map chr [ord c .. ord maxChar]
enumFromThen c c' = map chr [ord c, ord c' .. ord lastChar]
where lastChar = if c' < c then minChar else maxChar
instance Eq a => Eq [a] where
[] == [] = True
[] == (y:ys) = False
(x:xs) == [] = False
(x:xs) == (y:ys) = x==y && xs==ys
instance Ord a => Ord [a] where
[] <= _ = True
(_:_) <= [] = False
(x:xs) <= (y:ys) = x<y || (x==y && xs<=ys)
instance (Eq a, Eq b) => Eq (a,b) where
(x,y) == (u,v) = x==u && y==v
instance (Ord a, Ord b) => Ord (a,b) where
(x,y) <= (u,v) = x<u || (x==u && y<=v)
instance Eq Bool where
True == True = True
False == False = True
_ == _ = False
instance Ord Bool where
False <= x = True
True <= x = x
-- Standard numerical functions: --------------------------------------------
primitive div "primDivInt",
quot "primQuotInt",
rem "primRemInt",
mod "primModInt" :: Int -> Int -> Int
subtract :: Num a => a -> a -> a
subtract = flip (-)
even, odd :: Int -> Bool
even x = x `rem` 2 == 0
odd = not . even
gcd :: Int -> Int -> Int
gcd x y = gcd' (abs x) (abs y)
where gcd' x 0 = x
gcd' x y = gcd' y (x `rem` y)
lcm :: Int -> Int -> Int
lcm _ 0 = 0
lcm 0 _ = 0
lcm x y = abs ((x `quot` gcd x y) * y)
(^) :: Num a => a -> Int -> a
x ^ 0 = fromInteger 1
x ^ (n+1) = f x n x
where f _ 0 y = y
f x n y = g x n where
g x n | even n = g (x*x) (n`quot`2)
| otherwise = f x (n-1) (x*y)
abs :: (Num a, Ord a) => a -> a
abs x | x>=fromInteger 0 = x
| otherwise = -x
signum :: (Num a, Ord a) => a -> Int
signum x
| x==fromInteger 0 = 0
| x> fromInteger 0 = 1
| otherwise = -1
sum, product :: Num a => [a] -> a
sum = foldl' (+) (fromInteger 0)
product = foldl' (*) (fromInteger 1)
sums, products :: Num a => [a] -> [a]
sums = scanl (+) (fromInteger 0)
products = scanl (*) (fromInteger 1)
-- Constructor classes: -----------------------------------------------------
class Functor f where
map :: (a -> b) -> (f a -> f b)
class Functor m => Monad m where
result :: a -> m a
join :: m (m a) -> m a
bind :: m a -> (a -> m b) -> m b
join x = bind x id
x `bind` f = join (map f x)
class Monad m => Monad0 m where
zero :: m a
class Monad0 c => MonadPlus c where
(++) :: c a -> c a -> c a
class (Functor left, Functor right) => Adjoint left right where
univ :: (a -> right b) -> (left a -> b)
unit :: a -> right (left a)
couniv :: (left a -> b) -> (a -> right b)
counit :: left (right a) -> a
unit = couniv id
counit = univ id
univ g = counit . map g
couniv g = map g . unit
class (Functor f, Functor g) => NatTransf f g where
eta :: f a -> g a
-- Monad based utilities: ---------------------------------------------------
apply :: Monad m => (a -> m b) -> (m a -> m b)
apply = flip bind
(@@) :: Monad m => (a -> m b) -> (c -> m a) -> (c -> m b)
f @@ g = join . map f . g
concat :: MonadPlus c => [c a] -> c a
concat = foldr (++) zero
filter :: Monad0 m => (a -> Bool) -> m a -> m a
filter p xs = [ x | x<-xs, p x ]
mfoldl :: Monad m => (a -> b -> m a) -> a -> [b] -> m a
mfoldl f a [] = result a
mfoldl f a (x:xs) = f a x `bind` (\fax -> mfoldl f fax xs)
mfoldr :: Monad m => (a -> b -> m b) -> b -> [a] -> m b
mfoldr f a [] = result a
mfoldr f a (x:xs) = mfoldr f a xs `bind` (\y -> f x y)
mapl :: Monad m => (a -> m b) -> ([a] -> m [b])
mapl f [] = [ [] ]
mapl f (x:xs) = [ y:ys | y <- f x, ys <- mapl f xs ]
mapr :: Monad m => (a -> m b) -> ([a] -> m [b])
mapr f [] = [ [] ]
mapr f (x:xs) = [ y:ys | ys <- mapr f xs, y <- f x ]
-- The monad of lists: ------------------------------------------------------
instance Functor [] where map f [] = []
map f (x:xs) = f x : map f xs
instance Monad [] where result x = [x]
[] `bind` f = []
(x:xs) `bind` f = f x ++ (xs `bind` f)
instance Monad0 [] where zero = []
instance MonadPlus [] where [] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)
-- Standard list processing functions: --------------------------------------
head :: [a] -> a
head (x:_) = x
last :: [a] -> a
last [x] = x
last (_:xs) = last xs
tail :: [a] -> [a]
tail (_:xs) = xs
init :: [a] -> [a]
init [x] = []
init (x:xs) = x : init xs
genericLength :: Num a => [b] -> a -- calculate length of list
genericLength = foldl' (\n _ -> n + fromInteger 1) (fromInteger 0)
length :: [a] -> Int
length = foldl' (\n _ -> n + 1) 0
(!!) :: [a] -> Int -> a -- xs!!n selects the nth element of
(x:_) !! 0 = x -- the list xs (first element xs!!0)
(_:xs) !! (n+1) = xs !! n -- for any n < length xs.
iterate :: (a -> a) -> a -> [a] -- generate the infinite list
iterate f x = x : iterate f (f x) -- [x, f x, f (f x), ...
repeat :: a -> [a] -- generate the infinite list
repeat x = xs where xs = x:xs -- [x, x, x, x, ...
cycle :: [a] -> [a] -- generate the infinite list
cycle xs = xs' where xs'=xs++xs'-- xs ++ xs ++ xs ++ ...
copy :: Int -> a -> [a] -- make list of n copies of x
copy n x = take n xs where xs = x:xs
nub :: Eq a => [a] -> [a] -- remove duplicates from list
nub [] = []
nub (x:xs) = x : nub (filter (x/=) xs)
reverse :: [a] -> [a] -- reverse elements of list
reverse = foldl (flip (:)) []
elem, notElem :: Eq a => a -> [a] -> Bool
elem = any . (==) -- test for membership in list
notElem = all . (/=) -- test for non-membership
maximum, minimum :: Ord a => [a] -> a
maximum = foldl1 max -- max element in non-empty list
minimum = foldl1 min -- min element in non-empty list
transpose :: [[a]] -> [[a]] -- transpose list of lists
transpose = foldr
(\xs xss -> zipWith (:) xs (xss ++ repeat []))
[]
-- null provides a simple and efficient way of determining whether a given
-- list is empty, without using (==) and hence avoiding a constraint of the
-- form Eq [a].
null :: [a] -> Bool
null [] = True
null (_:_) = False
-- (\\) is used to remove the first occurrence of each element in the second
-- list from the first list. It is a kind of inverse of (++) in the sense
-- that (xs ++ ys) \\ xs = ys for any finite list xs of proper values xs.
(\\) :: Eq a => [a] -> [a] -> [a]
(\\) = foldl del
where [] `del` _ = []
(x:xs) `del` y
| x == y = xs
| otherwise = x : xs `del` y
-- Fold primitives: The foldl and scanl functions, variants foldl1 and
-- scanl1 for non-empty lists, and strict variants foldl' scanl' describe
-- common patterns of recursion over lists. Informally:
--
-- foldl f a [x1, x2, ..., xn] = f (...(f (f a x1) x2)...) xn
-- = (...((a `f` x1) `f` x2)...) `f` xn
-- etc...
--
-- The functions foldr, scanr and variants foldr1, scanr1 are duals of these
-- functions:
-- e.g. foldr f a xs = foldl (flip f) a (reverse xs) for finite lists xs.
foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs
foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs
foldl' :: (a -> b -> a) -> a -> [b] -> a
foldl' f a [] = a
foldl' f a (x:xs) = strict (foldl' f) (f a x) xs
scanl :: (a -> b -> a) -> a -> [b] -> [a]
scanl f q xs = q : (case xs of
[] -> []
x:xs -> scanl f (f q x) xs)
scanl1 :: (a -> a -> a) -> [a] -> [a]
scanl1 f (x:xs) = scanl f x xs
scanl' :: (a -> b -> a) -> a -> [b] -> [a]
scanl' f q xs = q : (case xs of
[] -> []
x:xs -> strict (scanl' f) (f q x) xs)
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)
scanr :: (a -> b -> b) -> b -> [a] -> [b]
scanr f q0 [] = [q0]
scanr f q0 (x:xs) = f x q : qs
where qs@(q:_) = scanr f q0 xs
scanr1 :: (a -> a -> a) -> [a] -> [a]
scanr1 f [x] = [x]
scanr1 f (x:xs) = f x q : qs
where qs@(q:_) = scanr1 f xs
-- List breaking functions:
--
-- take n xs returns the first n elements of xs
-- drop n xs returns the remaining elements of xs
-- splitAt n xs = (take n xs, drop n xs)
--
-- takeWhile p xs returns the longest initial segment of xs whose
-- elements satisfy p
-- dropWhile p xs returns the remaining portion of the list
-- span p xs = (takeWhile p xs, dropWhile p xs)
--
-- takeUntil p xs returns the list of elements upto and including the
-- first element of xs which satisfies p
take :: Int -> [a] -> [a]
take 0 _ = []
take _ [] = []
take (n+1) (x:xs) = x : take n xs
drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop _ [] = []
drop (n+1) (_:xs) = drop n xs
splitAt :: Int -> [a] -> ([a], [a])
splitAt 0 xs = ([],xs)
splitAt _ [] = ([],[])
splitAt (n+1) (x:xs) = (x:xs',xs'') where (xs',xs'') = splitAt n xs
takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)
| p x = x : takeWhile p xs
| otherwise = []
takeUntil :: (a -> Bool) -> [a] -> [a]
takeUntil p [] = []
takeUntil p (x:xs)
| p x = [x]
| otherwise = x : takeUntil p xs
dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs')
| p x = dropWhile p xs'
| otherwise = xs
span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs')
| p x = let (ys,zs) = span p xs' in (x:ys,zs)
| otherwise = ([],xs)
break p = span (not . p)
-- Text processing:
-- lines s returns the list of lines in the string s.
-- words s returns the list of words in the string s.
-- unlines ls joins the list of lines ls into a single string
-- with lines separated by newline characters.
-- unwords ws joins the list of words ws into a single string
-- with words separated by spaces.
lines :: String -> [String]
lines "" = []
lines s = l : (if null s' then [] else lines (tail s'))
where (l, s') = break ('\n'==) s
words :: String -> [String]
words s = case dropWhile isSpace s of
"" -> []
s' -> w : words s''
where (w,s'') = break isSpace s'
unlines :: [String] -> String
unlines = concat . map (\l -> l ++ "\n")
unwords :: [String] -> String
unwords [] = []
unwords ws = foldr1 (\w s -> w ++ ' ':s) ws
-- Merging and sorting lists:
merge :: Ord a => [a] -> [a] -> [a]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)
| x <= y = x : merge xs (y:ys)
| otherwise = y : merge (x:xs) ys
sort :: Ord a => [a] -> [a]
sort = foldr insert []
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys)
| x <= y = x:y:ys
| otherwise = y:insert x ys
qsort :: Ord a => [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort [ u | u<-xs, u<x ] ++
[ x ] ++
qsort [ u | u<-xs, u>=x ]
-- zip and zipWith families of functions:
zip :: [a] -> [b] -> [(a,b)]
zip = zipWith (\a b -> (a,b))
zip3 :: [a] -> [b] -> [c] -> [(a,b,c)]
zip3 = zipWith3 (\a b c -> (a,b,c))
zip4 :: [a] -> [b] -> [c] -> [d] -> [(a,b,c,d)]
zip4 = zipWith4 (\a b c d -> (a,b,c,d))
zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a,b,c,d,e)]
zip5 = zipWith5 (\a b c d e -> (a,b,c,d,e))
zip6 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [(a,b,c,d,e,f)]
zip6 = zipWith6 (\a b c d e f -> (a,b,c,d,e,f))
zip7 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g] -> [(a,b,c,d,e,f,g)]
zip7 = zipWith7 (\a b c d e f g -> (a,b,c,d,e,f,g))
zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith z (a:as) (b:bs) = z a b : zipWith z as bs
zipWith _ _ _ = []
zipWith3 :: (a->b->c->d) -> [a]->[b]->[c]->[d]
zipWith3 z (a:as) (b:bs) (c:cs)
= z a b c : zipWith3 z as bs cs
zipWith3 _ _ _ _ = []
zipWith4 :: (a->b->c->d->e) -> [a]->[b]->[c]->[d]->[e]
zipWith4 z (a:as) (b:bs) (c:cs) (d:ds)
= z a b c d : zipWith4 z as bs cs ds
zipWith4 _ _ _ _ _ = []
zipWith5 :: (a->b->c->d->e->f) -> [a]->[b]->[c]->[d]->[e]->[f]
zipWith5 z (a:as) (b:bs) (c:cs) (d:ds) (e:es)
= z a b c d e : zipWith5 z as bs cs ds es
zipWith5 _ _ _ _ _ _ = []
zipWith6 :: (a->b->c->d->e->f->g)
-> [a]->[b]->[c]->[d]->[e]->[f]->[g]
zipWith6 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs)
= z a b c d e f : zipWith6 z as bs cs ds es fs
zipWith6 _ _ _ _ _ _ _ = []
zipWith7 :: (a->b->c->d->e->f->g->h)
-> [a]->[b]->[c]->[d]->[e]->[f]->[g]->[h]
zipWith7 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs)
= z a b c d e f g : zipWith7 z as bs cs ds es fs gs
zipWith7 _ _ _ _ _ _ _ _ = []
unzip :: [(a,b)] -> ([a],[b])
unzip = foldr (\(a,b) ~(as,bs) -> (a:as, b:bs)) ([], [])
-- Formatted output: --------------------------------------------------------
primitive primPrint "primPrint" :: Int -> a -> String -> String
show' :: a -> String
show' x = primPrint 0 x []
cjustify, ljustify, rjustify :: Int -> String -> String
cjustify n s = space halfm ++ s ++ space (m - halfm)
where m = n - length s
halfm = m `div` 2
ljustify n s = s ++ space (n - length s)
rjustify n s = space (n - length s) ++ s
space :: Int -> String
space n = copy n ' '
layn :: [String] -> String
layn = lay 1 where lay _ [] = []
lay n (x:xs) = rjustify 4 (show n) ++ ") "
++ x ++ "\n" ++ lay (n+1) xs
-- Miscellaneous: -----------------------------------------------------------
until :: (a -> Bool) -> (a -> a) -> a -> a
until p f x | p x = x
| otherwise = until p f (f x)
until' :: (a -> Bool) -> (a -> a) -> a -> [a]
until' p f = takeUntil p . iterate f
primitive error "primError" :: String -> a
undefined :: a
undefined | False = undefined
asTypeOf :: a -> a -> a
x `asTypeOf` _ = x
-- A trimmed down version of the Haskell Text class: ------------------------
type ShowS = String -> String
class Text a where
showsPrec :: Int -> a -> ShowS
showList :: [a] -> ShowS
showsPrec = primPrint
showList [] = showString "[]"
showList (x:xs) = showChar '[' . shows x . showl xs
where showl [] = showChar ']'
showl (x:xs) = showChar ',' . shows x . showl xs
shows :: Text a => a -> ShowS
shows = showsPrec 0
show :: Text a => a -> String
show x = shows x ""
showChar :: Char -> ShowS
showChar = (:)
showString :: String -> ShowS
showString = (++)
instance Text () where
showsPrec d () = showString "()"
instance Text Bool where
showsPrec d True = showString "True"
showsPrec d False = showString "False"
primitive primShowsInt "primShowsInt" :: Int -> Int -> String -> String
instance Text Int where showsPrec = primShowsInt
{- PC version off -}
primitive primShowsFloat "primShowsFloat" :: Int -> Float -> String -> String
instance Text Float where showsPrec = primShowsFloat
{- PC version on -}
instance Text Char where
showsPrec p c = showString [q, c, q] where q = '\''
showList cs = showChar '"' . showl cs
where showl "" = showChar '"'
showl ('"':cs) = showString "\\\"" . showl cs
showl (c:cs) = showChar c . showl cs
-- Haskell has showLitChar c . showl cs
instance Text a => Text [a] where
showsPrec p = showList
instance (Text a, Text b) => Text (a,b) where
showsPrec p (x,y) = showChar '(' . shows x . showChar ',' .
shows y . showChar ')'
-- (Dialogue functions removed) --------------------------------------------
primitive primFopen "primFopen" :: String -> a -> (String -> a) -> a
openfile :: String -> String
openfile f = primFopen f (error ("can't open file "++f)) id
-- End of Gofer standard prelude --------------------------------------------
----------------------------------------------------------------------
-- Basic extensions
--------------------------------------------------------------------------
-- General Functions
-- numbers
numval :: String -> Int
numval (' ':xs) = numval xs
numval ('+':xs) = numval xs
numval ('-':xs) = - (numval xs)
numval xs = foldl (\n x -> 10 * n + ord x - ord '0') 0 xs
-- strings
infix 4 `isPrefix`, `isRealPrefix`
isPrefix :: Eq a => [a] -> [a] -> Bool
[] `isPrefix` _ = True
(a:s) `isPrefix` (b:t) = a == b && s `isPrefix` t
_ `isPrefix` [] = False
isRealPrefix :: Eq a => [a] -> [a] -> Bool
_ `isRealPrefix` [] = False
(a:s) `isRealPrefix` (b:t) = a == b && s `isRealPrefix` t
[] `isRealPrefix` _ = True
-- self
self :: (a -> a -> b) -> a -> b
self f x = f x x
-- grouping
groupn :: Int -> [a] -> [[a]]
groupn n = takeWhile (not.null) . map (take n) . iterate (drop n)
--------------------------------------------------------------------------
-- General Monadic Functions
done :: Monad m => m ()
done = result ()
infixr 1 ==>
(==>) :: Monad m => m Bool -> m a -> m ()
b ==> a = do { c <- b; if c then void a else done }
seq :: Monad m => m a -> m b -> m b
seq am bm = do { am; bm }
void :: Monad m => m a -> m ()
void m = do { m; done }
binds :: Monad m => [m a] -> m [a]
binds = mapl id
seqs :: Monad m => [m ()] -> m ()
seqs = foldr seq done
exitM :: Monad m => String -> m a
exitM s = error (copy 15 '\b' ++ s ++ copy (max 0 (15 - length s)) ' ')
ifM :: Monad m => Bool -> m () -> m ()
ifM b m = if b then m else done
--------------------------------------------------------------------------
-- type Maybe
data Maybe a = Just a | Nothing
instance Functor Maybe where
map f (Just a) = Just (f a)
map f Nothing = Nothing
instance Monad Maybe where
result a = Just a
Just a `bind` k = k a
Nothing `bind` k = Nothing
instance Monad0 Maybe where
zero = Nothing
instance MonadPlus Maybe where
Nothing ++ m = m
m ++ _ = m
maybe :: (a -> c) -> c -> Maybe a -> c
maybe just nothing (Just a) = just a
maybe just nothing Nothing = nothing
--------------------------------------------------------------------------
-- type Either
data Either a b = Left a | Right b
either :: (a -> c) -> (b -> c) -> Either a b -> c
either left right (Left a) = left a
either left right (Right b) = right b
--------------------------------------------------------------------------
-- type RoseTree
data RoseTree a = Rose a [RoseTree a]
instance Functor RoseTree where
map f (Rose a ts) = Rose (f a) (map (map f) ts)
roseTree :: (a -> [b] -> b) -> RoseTree a -> b
roseTree f (Rose a rs) = f a (map (roseTree f) rs)
--------------------------------------------------------------------------
-- IO monad
primitive bindIO "primIOBind" :: IO a -> (a -> IO b) -> IO b
primitive resultIO "primSTReturn" :: a -> ST s a
primitive primGetCh "primIOGetch" :: IO Char
primitive primPutChar "primIOPutchar" :: Char -> IO ()
primitive interleaveIO "primSTInter" :: IO a -> IO a
instance Monad IO where
bind = bindIO
result = resultIO
instance Monad0 IO where
zero = error "Pattern match failed in IO-monad."
instance Functor IO where
map f m = [ f x | x <- m ]
class Monad m => IOMonad m where
getCh :: m Char
getContents :: m String
getChar :: m Char
getChar = do c <- getCh; putChar c; result c
putChar :: Char -> m ()
putChar c = putStr [c]
putStr :: String -> m ()
putStr s = seqs [ putChar c | c <- s ]
instance IOMonad IO where
getCh = primGetCh
putChar = primPutChar
getContents = interleaveIO $
do c <- getCh
s <- getContents
result (c:s)
print :: (Text a, IOMonad m) => a -> m ()
print x = putStrLn (show x)
putStrLn :: IOMonad m => String -> m ()
putStrLn s = do putStr s; putChar '\n'
getLine :: IOMonad m => m String
getLine = do c <- getChar
if c=='\n' then result ""
else do cs <- getLine
result (c:cs)
interact :: IOMonad m => (String -> String) -> m ()
interact f = do s <- getContents; putStr (f s)
--------------------------------------------------------------------------
-- MutVar's
type Var a = MutVar RealWorld a
in newVar, readVar, writeVar, eqVar
primitive newVar "primSTNew" :: a -> IO (Var a)
primitive readVar "primSTDeref" :: Var a -> IO a
primitive writeVar "primSTAssign" :: Var a -> a -> IO ()
primitive eqVar "primSTMutVarEq" :: Var a -> Var a -> Bool
newVar' :: IO (Var a)
newVar' = newVar undefined
updateVar :: (a -> a) -> Var a -> IO ()
updateVar f var = do { a <- readVar var; writeVar var (f a) }
instance Eq (Var a) where
(==) = eqVar
--------------------------------------------------------------------------
-- MutArr's
primitive primSTNewArr "primSTNewArr"
:: (a -> Int) -> (a,a) -> b -> ST s (MutArr s a b)
primitive primSTReadArr "primSTReadArr"
:: ((a,a) -> a -> Int) -> MutArr s a b -> a -> ST s b
primitive primSTWriteArr "primSTWriteArr"
:: ((a,a) -> a -> Int) -> MutArr s a b -> a -> b -> ST s ()
type LArray a b = MutArr RealWorld a b
in newArr, readArr, writeArr
newArr :: Ix a => (a,a) -> b -> IO (LArray a b)
readArr :: Ix a => LArray a b -> a -> IO b
writeArr :: Ix a => LArray a b -> a -> b -> IO ()
newArr bounds c = primSTNewArr (index bounds) bounds c
readArr arr i = primSTReadArr index arr i
writeArr arr i x = primSTWriteArr index arr i x
--------------------------------------------------------------------------
-- Heap
type HeapPtr = Int
in showPtr, readPtr
, newHeap, heapAlloc, heapWrite, heapFree, heapFilter, heapRead
type Heap a = (LArray HeapPtr (Maybe a), Var (HeapPtr, [HeapPtr]))
in newHeap, heapAlloc, heapWrite, heapFree, heapFilter, heapRead
newHeap :: Int -> IO (Heap a)
newHeap size =
do heap <- newArr (1,size) Nothing
free <- newVar (0 :: HeapPtr, [1..size] :: [HeapPtr])
result (heap, free)
heapAlloc :: Heap a -> a -> IO HeapPtr
heapAlloc (arr, free) a =
do (last, ptrs) <- readVar free
case ptrs of
[] -> error "Heap is full"
(p:ptrs) -> do x <- readArr arr p
case x of
Nothing -> done
Just _ -> error "Full HeapCell reallocated"
writeArr arr p (Just a)
writeVar free (max p last, ptrs)
result p
heapWrite :: Heap a -> HeapPtr -> a -> IO ()
heapWrite (arr, free) ptr a =
do ma <- readArr arr ptr
case ma of
Just _ -> writeArr arr ptr (Just a)
Nothing -> error "Writing to an unallocated Heapcell"
heapFree :: Heap a -> HeapPtr -> IO ()
heapFree (arr, free) ptr =
do writeArr arr ptr Nothing
(last, ptrs) <- readVar free
if ptr == last then
writeVar free (last-1, ptr:ptrs)
else
writeVar free (last, ptr:ptrs)
heapRead :: Heap a -> HeapPtr -> IO a
heapRead (arr, free) ptr =
do ma <- readArr arr ptr
case ma of
Just a -> result a
Nothing -> error "Reading an unallocated HeapCell"
heapFilter :: Heap a -> (a -> Bool) -> IO ()
heapFilter (arr, free) pred =
do (last, ptrs) <- readVar free
(last',ptrs') <- doAll [1..last] (0,ptrs)
writeVar free (last', ptrs')
where
doAll [] (last,ptrs) = result (last,ptrs)
doAll (p:ps) (last,ptrs) =
do ma <- readArr arr p
case ma of
Just a | pred a -> do doAll ps (p,ptrs)
| otherwise -> do writeArr arr p Nothing
doAll ps (last,p:ptrs)
Nothing -> do doAll ps (last,ptrs)
showPtr :: HeapPtr -> String
showPtr p = 'p':show p
readPtr :: String -> HeapPtr
readPtr ('p':s) = numval s
instance Text HeapPtr where
showsPrec _ p = showString (showPtr p)
--------------------------------------------------------------------------
-- type Dyn
data Dyn = Dyn
fromDyn :: Dyn -> a
fromDyn = typeCast
toDyn :: a -> Dyn
toDyn = typeCast
primitive primCast "primStrict" :: (a -> a) -> a -> b
typeCast :: a -> b
typeCast = primCast id
--------------------------------------------------------------------------
-- the end.
|