1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
# plotspecial.tcl --
# Facilities to draw specialised plots in a dedicated canvas
#
# Note:
# It is a companion of "plotchart.tcl"
#
# DrawTargetData --
# Compute the coordinates for the symbol representing the skill and draw it
#
# Arguments:
# w Name of the canvas
# series Name of the series of symbols
# xvalues List of model results
# yvalues List of measurements to which the model results are compared
# Result:
# None
#
# Side effects:
# Symbol drawn
#
# Note:
# The lists of model data and measurements must have the same length
# Missing data can be represented as {}. Only pairs that have both x and
# y values are used in the computations.
#
proc ::Plotchart::DrawTargetData { w series xvalues yvalues } {
variable data_series
if { [llength $xvalues] != [llength $yvalues] } {
return -code error "Lists of model data and measurements should have the same length"
}
set xn {}
set yn {}
set xmean 0.0
set ymean 0.0
set count 0
foreach x $xvalues y $yvalues {
if { $x != {} && $y != {} } {
lappend xn $x
lappend yn $y
set xmean [expr {$xmean + $x}]
set ymean [expr {$ymean + $y}]
incr count
}
}
if { $count <= 1 } {
return
}
set xmean [expr {$xmean/double($count)}]
set ymean [expr {$ymean/double($count)}]
set sumx2 0.0
set sumy2 0.0
set sumxy 0.0
foreach x $xn y $yn {
set sumx2 [expr {$sumx2 + ($x-$xmean)*($x-$xmean)}]
set sumy2 [expr {$sumy2 + ($y-$ymean)*($y-$ymean)}]
set sumxy [expr {$sumxy + ($x-$xmean)*($y-$ymean)}]
}
set stdevx [expr {sqrt($sumx2 / double($count-1))}]
set stdevy [expr {sqrt($sumy2 / double($count-1))}]
set corrxy [expr {$sumxy / $stdevx / $stdevy / double($count-1)}]
set bstar [expr {($xmean-$ymean) / $stdevy}]
set sstar2 [expr {$sumx2 / $sumy2}]
set rmsd [expr {sqrt(1.0 + $sstar2 - 2.0 * sqrt($sstar2) * $corrxy)}]
DataConfig $w $series -type symbol
DrawData $w $series $rmsd $bstar
}
# DrawPerformanceData --
# Compute the coordinates for the performance profiles and draw the lines
#
# Arguments:
# w Name of the canvas
# profiledata Names and data for each profiled item
# Result:
# None
#
# Side effects:
# Symbol drawn
#
# Note:
# The lists of model data and measurements must have the same length
# Missing data can be represented as {}. Only pairs that have both x and
# y values are used in the computations.
#
proc ::Plotchart::DrawPerformanceData { w profiledata } {
variable data_series
variable scaling
#
# Determine the minima per solved problem - they function as scale factors
#
set scale {}
set values [lindex $profiledata 1]
set number [llength $values]
foreach v $values {
lappend scale {}
}
foreach {series values} $profiledata {
set idx 0
foreach s $scale v $values {
if { $s == {} || $s > $v } {
lset scale $idx $v
}
incr idx
}
}
#
# Scale the data (remove the missing values)
# and draw the series
#
set plotdata {}
foreach {series values} $profiledata {
set newvalues {}
foreach s $scale v $values {
if { $s != {} && $v != {} && $s != 0.0 } {
lappend newvalues [expr {$v / $s}]
}
}
set newvalues [lsort -real $newvalues]
set count 1
set yprev {}
foreach v $newvalues vn [concat [lrange $newvalues 1 end] 1.0e20] {
set y [expr {$count/double($number)}]
#
# Construct the staircase
#
if { $v != $vn } {
if { $yprev == {} } {
DrawData $w $series 1.0 $y
} else {
DrawData $w $series $v $yprev
}
DrawData $w $series $v $y
set yprev $y
}
incr count
}
}
}
# DrawDataNormalPlot --
# Compute the coordinates for the empirical distribution and draw the series
# in a normal distribution plot
#
# Arguments:
# w Name of the canvas
# series Name of the series
# mean Estimated mean
# stdev Estimated standard deviation
# data Actual data
# Result:
# None
#
# Note:
# The value of "a" is adopted from the corresponding Wikipedia page,
# which in turn adopted it from the R "stats" package (qqnorm function)
#
proc ::Plotchart::DrawDataNormalPlot { w series mean stdev data } {
set n [llength $data]
set a 0.375
if { $n > 10 } {
set a 0.5
}
set idx 1
foreach x [lsort -real -increasing $data] {
if { $x != {} } {
set xn [expr {($x - $mean) / $stdev}]
set pn [expr {($idx - $a) / ($n + 1 - 2.0 * $a)}]
set yn [::math::statistics::Inverse-cdf-normal 0.0 1.0 $pn]
DrawData $w $series $xn $yn
} else {
DrawData $w $series {} {}
}
incr idx
}
}
# DrawDiagonalNormalPlot --
# Draw the diagonal line in a normal distribution plot
#
# Arguments:
# w Name of the canvas
# Result:
# None
#
# Note:
# You can use the "diagonal" series to configure its colour
#
proc ::Plotchart::DrawDiagonalNormalPlot { w } {
variable scaling
DrawData $w diagonal $scaling($w,xmin) $scaling($w,ymin)
DrawData $w diagonal $scaling($w,xmax) $scaling($w,ymax)
}
|