File: point-store-mem.tcl

package info (click to toggle)
tklib 0.9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 23,156 kB
  • sloc: tcl: 105,088; sh: 2,573; ansic: 792; pascal: 359; makefile: 69; sed: 53; exp: 21
file content (284 lines) | stat: -rw-r--r-- 8,635 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
## -*- tcl -*-
# # ## ### ##### ######## ############# ######################
## (c) 2022-2023 Andreas Kupries

# @@ Meta Begin
# Package map::point::store::memory 0.1
# Meta author      {Andreas Kupries}
# Meta location    https://core.tcl.tk/tklib
# Meta platform    tcl
# Meta summary	   In-memory store for geo/point definitions
# Meta description In-memory store for geo/point definitions, with
# Meta description memoized calculation of extended attributes.
# Meta description Base data is taken from a backing store.
# Meta description Anything API-compatible to map::point::store::fs
# Meta subject	   {center, geo/point}
# Meta subject	   {diameter, geo/point}
# Meta subject	   {geo/point pixels, zoom}
# Meta subject	   {geo/point, center}
# Meta subject	   {geo/point, diameter}
# Meta subject	   {geo/point, memory store}
# Meta subject	   {geo/point, perimeter length}
# Meta subject	   {length, geo/point, perimeter}
# Meta subject	   {memory store, geo/point}
# Meta subject	   {perimeter length, geo/point}
# Meta subject	   {pixels, zoom, geo/point}
# Meta subject	   {store, geo/point, memory}
# Meta subject	   {zoom, geo/point pixels}
# Meta require     {Tcl 8.6-}
# Meta require     debug
# Meta require     debug::caller
# Meta require     {map::slippy 0.8}
# Meta require     snit
# @@ Meta End

package provide map::point::store::memory 0.1

# # ## ### ##### ######## ############# ######################
## API
#
##  <class> OBJ backend-store
#
##  <obj> ids			-> list (id...)
##  <obj> get ID		-> dict (name, geo, kind)
##  <obj> visible GEOBOX ZOOM	-> list (id...)
##  <obj> pixels ID ZOOM	-> list (point...)
#
# # ## ### ##### ######## ############# ######################
## Requirements

package require Tcl 8.6-
#
#                               ;# Tcllib
package require debug		;# - Narrative Tracing
package require debug::caller   ;#
package require map::slippy 0.8	;# - Map utilities
package require snit            ;# - OO system

# # ## ### ##### ######## ############# ######################
## Ensemble setup.

namespace eval map               { namespace export point  ; namespace ensemble create }
namespace eval map::point        { namespace export store  ; namespace ensemble create }
namespace eval map::point::store { namespace export memory ; namespace ensemble create }

debug level  tklib/map/point/store/memory
debug prefix tklib/map/point/store/memory {<[pid]> [debug caller] | }

# # ## ### ##### ######## ############# ######################

snit::type ::map::point::store::memory {
    # ..................................................................
    ## System configuration

    # . . .. ... ..... ........ ............. .....................
    ## State
    #
    # - Backing store, command prefix
    # - Pixel store     :: dict (id -> zoom -> point)
    # - Attribute store :: dict (id -> attr)
    #              attr :: dict ("names"    -> list (string...)
    #                            "geo"      -> geo
    #                            "kind"     -> string)

    variable mystore  {}
    variable mypixels {}
    variable myattr   {}

    # Visibility data based on zoom level (in the lower levels clusters begin to replace points).
    # Note that cluster geo information is stored in myattr also.

    variable myids {} ;# :: dict (zoom -> list (id...))

    # . . .. ... ..... ........ ............. .....................
    ## Lifecycle

    constructor {store maxzoom} {
	debug.tklib/map/point/store/memory {}

	set mystore $store

	# This package computes the clustering on construction time, from the geo locations found in
	# the backing store. A better system would be able to get the clustering directly from the
	# store, without any investment of runtime. IOW the clustering would be pre-computed
	# somewhere else, ahead of time. Further, the algorithm's core complexity likely is
	# O(n**2). More complex data structures (rtree or similar) are needed for a better O.

	# This package however is mainly for demonstration purposes, for use on/with data sets where
	# the scaling issues of this approach do not appear yet.

	$self LoadAndCluster $maxzoom
	return
    }

    destructor {
	debug.tklib/map/point/store/memory {}
	return
    }

    # . . .. ... ..... ........ ............. .....................
    ## API

    delegate method * to mystore except get	;# ids, visible

    method get {id} {
	debug.tklib/map/point/store/memory {}
	return [dict get $myattr $id]
    }

    method pixels {id zoom} {
	debug.tklib/map/point/store/memory {}
	return [dict get $mypixels $id $zoom]
    }

    method visible {geobox zoom} {
	debug.tklib/map/point/store/memory {}

	# visible, taking zoom into account - i.e. deliver clusters as necessary.

	set ids {}
	foreach id [dict get $myids $zoom] {
	    set geo [dict get $myattr $id geo]
	    #puts $id//$geo
	    if {![map slippy geo box inside $geobox $geo]} continue

	    lappend ids $id
	}
	set ids [lsort -unique $ids]
	#puts (($ids))
	return $ids
    }

    # . . .. ... ..... ........ ............. .....................
    ## Helpers

    method LoadAndCluster {maxzoom} {
	debug.tklib/map/point/store/memory {}

	# pins  :: dict (zoom -> list (pin...))
	# pin   :: list (point id)
	# point :: list (x y)

	foreach id [DO ids] {
	    set attr [DO get $id]
	    set geo  [dict get $attr geo]
	    set bbox [map slippy geo bbox $geo]

	    dict set attr bbox $bbox
	    dict set myattr $id $attr

	    # Compute points per zoom level, collect for clustering, and fill base layer of the
	    # pixel cache.
	    for {set z 0} {$z <= $maxzoom} {incr z} {
		set point [map slippy geo 2point $z $geo]
		dict lappend pins $z [list $point $id]
		dict set mypixels $id $z $point
	    }
	}

	# Pins gives us the pixel data (including id), per zoom level.  (Origin was per
	# location). This is now clustered and then converted to the final pixel and visibility
	# data.

	dict for {z pins} $pins {
	    dict set myids $z [Cluster $z $pins]
	}

	return
    }

    proc Cluster {z pins} {
	# pins  :: list (pin...)
	# pin   :: list (point id)
	# point :: list (x y)
	upvar 1 counter counter mypixels mypixels myattr myattr

	# At levels with suitable detail we forego any kind of clustering.
	# We simply use the points as they are.
	if {$z >= 18} {
	    return [lsort -unique [lmap pin $pins {
		# pin :: list (point id)
		lindex $pin end
	    }]]
	}

	set clusters {}	;# :: dict (point -> list(point...))
	set map      {} ;# :: dict (point -> id)

	foreach pin [lsort -dict $pins] {
	    lassign $pin point id
	    dict set map $point $id

	    if {[FindCluster $clusters $point center]} {
		# Extend found cluster
		# - ATTENTION - This may move the cluster center.
		set points [dict get $clusters $center]
		dict unset clusters $center
		lappend points $point
		set center [map slippy point center-list $points]
		dict set clusters $center $points

	    } else {
		# Start a new cluster
		dict set clusters $point [list $point]
	    }
	}

	# Convert the clusters into fake geo locations, pixel data, and the list of ids to consider
	# at the level.

	dict for {center points} $clusters {
	    if {[llength $points] < 2} {
		# Cluster is actually single point, center is the point.
		# Reuse the point itself.
		set id [lindex [dict get $map $center] 0]
	    } else {
		# Multiple points are an actual cluster.
		set id c/[incr counter]

		# Create the necessary attribute data for this fake.
		dict set myattr $id names {}
		dict set myattr $id geo   [map slippy point 2geo $z $center]
		dict set myattr $id kind  cluster
		dict set myattr $id count [llength $points] ;# Data for default cluster style

		# And extend the pixel cache for it
		dict set mypixels $id $z $center
	    }

	    lappend ids $id
	}

	return $ids
    }

    proc FindCluster {clusters point cv} {
	upvar $cv center

	set best Inf
	dict for {centroid points} $clusters {
	    set d [map slippy point distance $centroid $point]
	    if {$d >= $best} continue
	    set best $d
	    set center $centroid
	}

	# Check if we can place the pointo into the nearest cluster, and return the result of that
	# check. The chosen threshold is 1.5x the circle radius for default cluster style in
	# `map::point::map-display`. This reduces the probability of neighbouring clusters visually
	# overlapping (too much).
	return [expr {$best <= 30}]
    }

    proc DO {args} {
	debug.tklib/map/point/store/memory {}

	upvar 1 mystore mystore
	return [uplevel #0 [list {*}$mystore {*}$args]]
    }

    # . . .. ... ..... ........ ............. .....................
}

# # ## ### ##### ######## ############# ######################
return