File: test_norm_methods.py

package info (click to toggle)
tnseq-transit 3.3.12-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 122,352 kB
  • sloc: python: 14,793; makefile: 143; sh: 49
file content (154 lines) | stat: -rw-r--r-- 5,060 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import sys
import os

basedir = os.path.dirname(__file__)
sys.path.insert(0, basedir + '/../src/')

import shutil
import unittest
import os
import numpy

from transit_test import *

import pytransit.norm_tools as norm_tools
import pytransit.tnseq_tools as tnseq_tools

from pytransit.analysis.gumbel import GumbelMethod
from pytransit.analysis.binomial import BinomialMethod
from pytransit.analysis.griffin import GriffinMethod
from pytransit.analysis.hmm import HMMMethod

from pytransit.analysis.resampling import ResamplingMethod
from pytransit.analysis.rankproduct import RankProductMethod


# RAW STATISTICS:

raw_ctrl_rep1 = (0.41855103545338784, 53.913866362844317, 128.81073464420675, 70.0, 3855.0, 4022244.0, 4.022213863266365, 33.02399374787363)

raw_ctrl_rep2 = (0.51571610481871188, 86.141009315729505, 167.03183885640027, 89.0, 5944.0, 6426550.0, 3.975522680364774, 33.45593924344892)


raw_exp_rep1 = (0.43946116212050129, 52.944722203605657, 120.47645336424084, 56.0, 47546.0, 3949941.0, 54.83729352080048, 4237.703504066973)

raw_exp_rep2 = (0.43891160109912203, 53.013082233094295, 120.78305084745763, 46.0, 217960.0, 3955041.0, 105.78284470780153, 14216.199240166581)

raw_exp_rep3 = (0.35898398230681589, 60.667260907445879, 168.99712493465759, 60.0, 102013.0, 4526081.0, 42.17620960361282, 2327.971405759911)


raw_means = [53.913866362844317, 86.141009315729505, 52.944722203605657, 53.013082233094295, 60.667260907445879]


class TestNormMethods(TransitTestCase):


    def test_nonorm(self):
        data,position = tnseq_tools.get_data(all_data_list)
        norm_data,factors = norm_tools.normalize_data(data, "nonorm")
        self.assertTrue((factors == numpy.array([ 1.])).all())
        N = len(all_data_list)
        for k in range(N):
           self.assertEqual(numpy.mean(norm_data[k]), raw_means[k])


    def test_TTR(self):
        N = len(all_data_list)
        data,position = tnseq_tools.get_data(all_data_list)
        norm_data,factors = norm_tools.normalize_data(data, "TTR")
        self.assertFalse((factors == numpy.ones(N)).all())
        for k in range(N):
           self.assertNotEqual(numpy.mean(norm_data[k]), raw_means[k])
#    """

    def test_resampling_nonorm(self):
        args = [ctrl_rep1, ctrl_rep2, small_annotation, output, "-s", "1000", "-n", "nonorm"]
        G = ResamplingMethod.fromargs(args)
        G.Run()
        self.assertTrue(os.path.exists(output))
        pvals, qvals = significant_pvals_qvals(output)
        self.assertLessEqual(len(pvals), 5)
        self.assertLessEqual(len(qvals), 1)

#

    def test_resampling_TTR(self):
        args = [ctrl_rep1, ctrl_rep2, small_annotation, output, "-s", "1000", "-n", "TTR"]
        G = ResamplingMethod.fromargs(args)
        G.Run()
        self.assertTrue(os.path.exists(output))
        pvals, qvals = significant_pvals_qvals(output)
        self.assertLessEqual(len(pvals), 1)
        self.assertLessEqual(len(qvals), 1)

#

    def test_resampling_NZMean(self):
        args = [ctrl_rep1, ctrl_rep2, small_annotation, output, "-s", "1000", "-n", "nzmean"]
        G = ResamplingMethod.fromargs(args)
        G.Run()
        self.assertTrue(os.path.exists(output))
        pvals, qvals = significant_pvals_qvals(output)
        self.assertLessEqual(len(pvals), 5)
        self.assertLessEqual(len(qvals), 1)
#

    def test_resampling_TotReads(self):
        args = [ctrl_rep1, ctrl_rep2, small_annotation, output, "-s", "1000", "-n", "totreads"]
        G = ResamplingMethod.fromargs(args)
        G.Run()
        self.assertTrue(os.path.exists(output))
        pvals, qvals = significant_pvals_qvals(output)
        self.assertLessEqual(len(pvals), 5)
        self.assertLessEqual(len(qvals), 1)
#

    def test_resampling_Quantile(self):
        args = [ctrl_rep1, ctrl_rep2, small_annotation, output, "-s", "1000", "-n", "quantile"]
        G = ResamplingMethod.fromargs(args)
        G.Run()
        self.assertTrue(os.path.exists(output))
        hits = count_hits(output)
        pvals, qvals = significant_pvals_qvals(output)
        self.assertLessEqual(len(pvals), 5)
        self.assertLessEqual(len(qvals), 1)
#
    
    def test_resampling_ZINFNB(self):
        args = [ctrl_rep1, ctrl_rep2, small_annotation, output, "-s", "1000", "-n", "zinfnb"]
        G = ResamplingMethod.fromargs(args)
        G.Run()
        self.assertTrue(os.path.exists(output))

#
    """
    def test_resampling_BGC(self):
        args = [ctrl_data_txt, exp_data_txt, annotation, output, "-s", "1000", "-n", "betageom"]
        G = ResamplingMethod.fromargs(args)
        G.Run()
        self.assertTrue(os.path.exists(output))
        hits = count_hits(output)
        self.assertLessEqual(hits, 20)
    """


#    """
#
    """
    def test_resampling_aBGC(self):
        args = [ctrl_data_txt, exp_data_txt, annotation, output, "-s", "1000", "-n", "aBGC"]
        G = ResamplingMethod.fromargs(args)
        G.Run()
        self.assertTrue(os.path.exists(output))
    """

    



    


 
if __name__ == '__main__':
    unittest.main()