1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
import os
import time
import argparse
from datasets import load_dataset
from tiktoken.load import load_tiktoken_bpe
import tiktoken
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
from typing import Tuple, List
from multiprocessing import Process
MODEL_ID = "meta-llama/Meta-Llama-3.1-8B"
DATASET = "facebook/xnli"
DATASET_CONFIG = "all_languages"
DEFAULT_THREADS = [2**i for i in range(8) if 2**i <= os.cpu_count()]
def format_byte_size(num_bytes: int) -> Tuple[str, str]:
"""Convert bytes to a human-readable format (KB, MB, GB)."""
num_bytes_f = float(num_bytes)
for unit in ["B", "KB", "MB", "GB", "TB"]:
if num_bytes_f < 1024:
return f"{num_bytes_f:.2f} {unit}", unit
num_bytes_f /= 1024
return f"{num_bytes_f:.2f} PB", "PB"
def benchmark_batch(model: str, documents: list[str], num_threads: int, document_length: float) -> None:
os.environ["RAYON_NUM_THREADS"] = str(num_threads)
num_bytes = sum(map(len, map(str.encode, documents)))
readable_size, unit = format_byte_size(num_bytes)
print(f"==============")
print(f"num_threads: {num_threads}, data size: {readable_size}, documents: {len(documents)} Avg Length: {document_length:.0f}")
filename = hf_hub_download(MODEL_ID, "original/tokenizer.model")
mergeable_ranks = load_tiktoken_bpe(filename)
pat_str = r"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"
num_reserved_special_tokens = 256
special_tokens = [
"<|begin_of_text|>",
"<|end_of_text|>",
"<|reserved_special_token_0|>",
"<|reserved_special_token_1|>",
"<|reserved_special_token_2|>",
"<|reserved_special_token_3|>",
"<|start_header_id|>",
"<|end_header_id|>",
"<|reserved_special_token_4|>",
"<|eot_id|>", # end of turn
] + [
f"<|reserved_special_token_{i}|>"
for i in range(5, num_reserved_special_tokens - 5)
]
num_base_tokens = len(mergeable_ranks)
special_tokens = {
token: num_base_tokens + i for i, token in enumerate(special_tokens)
}
enc = tiktoken.Encoding(
name=model,
pat_str=pat_str,
mergeable_ranks=mergeable_ranks,
special_tokens=special_tokens,
)
out = enc.encode("This is a test")
hf_enc = Tokenizer.from_pretrained(model)
out2 = hf_enc.encode("This is a test", add_special_tokens=False).ids
assert out == out2, "sanity check"
start = time.perf_counter_ns()
enc.encode_ordinary_batch(documents, num_threads=num_threads)
end = time.perf_counter_ns()
readable_size, unit = format_byte_size(num_bytes / (end - start) * 1e9)
print(f"tiktoken \t{readable_size} / s")
start = time.perf_counter_ns()
hf_enc.encode_batch_fast(documents)
end = time.perf_counter_ns()
readable_size, unit = format_byte_size(num_bytes / (end - start) * 1e9)
print(f"huggingface \t{readable_size} / s")
def test(model: str, dataset: str, dataset_config: str, threads: List[int]):
dataset_xnli = load_dataset(dataset, dataset_config)
input_lengths = [(10, False, True), (10_000, False, True), (10_000, False, False)]
for num_threads in threads:
for length, fuse, long in input_lengths:
documents = []
for i, item in enumerate(dataset_xnli["train"]):
if i >= length:
break
if long:
documents.append("".join(item["premise"].values()))
else:
documents.append(item["premise"]["en"])
if fuse:
documents=["".join(documents)]
document_length = sum(len(d) for d in documents) / len(documents)
# Rayon thread pool is global to a process, we need to launch
# separate processes in order to accurately use the correct number of threads.
# Otherwise, we're simply running tokenizers in whatever tests comes first.
# tokenizers does NOT provide a method to change the number of threads during
# runtime.
p = Process(target=benchmark_batch, args=(model, documents, num_threads, document_length))
p.start()
p.join()
# benchmark_batch(model, documents, num_threads)
def main():
parser = argparse.ArgumentParser(
prog='bench_tokenizer',
description='Getting a feel for speed when tokenizing',
)
parser.add_argument('-m', '--model', default=MODEL_ID, type=str)
parser.add_argument('-d', '--dataset', default=DATASET, type=str)
parser.add_argument('-ds', '--dataset-config', default=DATASET_CONFIG, type=str)
parser.add_argument('-t', '--threads', nargs='+', default=DEFAULT_THREADS, type=int)
args = parser.parse_args()
test(args.model, args.dataset, args.dataset_config, args.threads)
# Call the function to run the benchmark
if __name__ == "__main__":
main()
|