1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
|
import transformers
from tokenizers.implementations import SentencePieceUnigramTokenizer, BaseTokenizer
from tokenizers.processors import TemplateProcessing
from tokenizers.models import Unigram, BPE
from tokenizers import decoders
from tokenizers import Tokenizer, Regex
from tokenizers.normalizers import (
StripAccents,
NFKD,
Lowercase,
Sequence,
BertNormalizer,
Precompiled,
Replace,
)
from tokenizers.pre_tokenizers import (
Digits,
WhitespaceSplit,
Metaspace,
Sequence as PSequence,
)
import json
import unicodedata
import sys
import os
import datetime
import argparse
sys.path.append(".")
from spm_parity_check import check_details
from sentencepiece_extractor import SentencePieceExtractor
def check_number_comma(piece: str) -> bool:
return len(piece) < 2 or piece[-1] != "," or not piece[-2].isdigit()
def get_proto(filename: str):
try:
import sys
sys.path.append(".")
import sentencepiece_model_pb2 as model
except Exception:
raise Exception(
"You don't seem to have the required protobuf file, in order to use this function you need to run `pip install protobuf` and `wget https://raw.githubusercontent.com/google/sentencepiece/master/python/sentencepiece_model_pb2.py` for us to be able to read the intrinsics of your spm_file. `pip install sentencepiece` is not required."
)
m = model.ModelProto()
m.ParseFromString(open(filename, "rb").read())
return m
class Converter:
def __init__(self, original_tokenizer):
self.original_tokenizer = original_tokenizer
def converted(self) -> Tokenizer:
raise NotImplementedError()
class SpmConverter(Converter):
def __init__(self, *args):
super().__init__(*args)
self.proto = get_proto(self.original_tokenizer.vocab_file)
def vocab(self, proto):
return [(piece.piece, piece.score) for piece in proto.pieces]
def unk_id(self, proto):
return proto.trainer_spec.unk_id
def tokenizer(self, proto):
model_type = proto.trainer_spec.model_type
vocab = self.vocab(proto)
unk_id = self.unk_id(proto)
if model_type == 1:
tokenizer = Tokenizer(Unigram(vocab, unk_id))
elif model_type == 2:
vocab, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract()
tokenizer = Tokenizer(BPE(vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True))
else:
raise Exception(
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
)
return tokenizer
def normalizer(self, proto):
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
return Sequence([Precompiled(precompiled_charsmap), Replace(Regex(" {2,}"), " ")])
def post_processor(self, tokenizer):
return None
def converted(self):
tokenizer = self.tokenizer(self.proto)
# Tokenizer assemble
tokenizer.normalizer = self.normalizer(self.proto)
replacement = "▁"
prepend_scheme = "always"
tokenizer.pre_tokenizer = Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
post_processor = self.post_processor(tokenizer)
if post_processor:
tokenizer.post_processor = post_processor
# TODO what parameters should we give ?
parameters = {}
return BaseTokenizer(tokenizer, parameters)
class AlbertConverter(SpmConverter):
def vocab(self, proto):
return [
(piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100)
for piece in proto.pieces
]
def normalizer(self, proto):
normalizers = [Replace("``", '"'), Replace("''", '"')]
if not self.original_tokenizer.keep_accents:
normalizers.append(NFKD())
normalizers.append(StripAccents())
if self.original_tokenizer.do_lower_case:
normalizers.append(Lowercase())
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
normalizers.append(Precompiled(precompiled_charsmap))
normalizers.append(Replace(Regex(" {2,}"), " "))
return Sequence(normalizers)
def post_processor(self, tokenizer):
return TemplateProcessing(
seq_a=["[CLS]", "$0", "[SEP]"],
seq_b=["$1", "[SEP]"],
special_tokens=[
("[CLS]", tokenizer.get_vocab()["[CLS]"]),
("[SEP]", tokenizer.get_vocab()["[SEP]"]),
],
)
class CamembertConverter(SpmConverter):
def vocab(self, proto):
vocab = [
("<s>NOTUSED", 0.0),
("<pad>", 0.0),
("</s>NOTUSED", 0.0),
("<unk>", 0.0),
]
vocab += [(piece.piece, piece.score) for piece in proto.pieces]
return vocab
def unk_id(self, proto):
# See vocab unk position
return 3
def post_processor(self, tokenizer):
return TemplateProcessing(
seq_a=["<s>", "$0", "</s>"],
seq_b=["$1", "</s>"],
special_tokens=[
("<s>", tokenizer.get_vocab()["<s>"]),
("</s>", tokenizer.get_vocab()["</s>"]),
],
)
class MBartConverter(SpmConverter):
def vocab(self, proto):
vocab = [
("<s>", 0.0),
("<pad>", 0.0),
("</s>", 0.0),
("<unk>", 0.0),
]
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
vocab += [
("ar_AR", 0.0),
("cs_CZ", 0.0),
("de_DE", 0.0),
("en_XX", 0.0),
("es_XX", 0.0),
("et_EE", 0.0),
("fi_FI", 0.0),
("fr_XX", 0.0),
("gu_IN", 0.0),
("hi_IN", 0.0),
("it_IT", 0.0),
("ja_XX", 0.0),
("kk_KZ", 0.0),
("ko_KR", 0.0),
("lt_LT", 0.0),
("lv_LV", 0.0),
("my_MM", 0.0),
("ne_NP", 0.0),
("nl_XX", 0.0),
("ro_RO", 0.0),
("ru_RU", 0.0),
("si_LK", 0.0),
("tr_TR", 0.0),
("vi_VN", 0.0),
("zh_CN", 0.0),
]
return vocab
def unk_id(self, proto):
return 3
def post_processor(self, tokenizer):
return TemplateProcessing(
seq_a=["$0", "</s>", "en_XX"],
seq_b=["$1", "</s>"],
special_tokens=[
("en_XX", tokenizer.get_vocab()["en_XX"]),
("</s>", tokenizer.get_vocab()["</s>"]),
],
)
class XLMRobertaConverter(SpmConverter):
def vocab(self, proto):
vocab = [
("<s>", 0.0),
("<pad>", 0.0),
("</s>", 0.0),
("<unk>", 0.0),
]
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
return vocab
def unk_id(self, proto):
unk_id = 3
return unk_id
def post_processor(self, tokenizer):
return TemplateProcessing(
seq_a=["<s>", "$0", "</s>"],
seq_b=["$1", "</s>"],
special_tokens=[
("<s>", tokenizer.get_vocab()["<s>"]),
("</s>", tokenizer.get_vocab()["</s>"]),
],
)
class XLNetConverter(SpmConverter):
def vocab(self, proto):
return [
(piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100)
for piece in proto.pieces
]
def normalizer(self, proto):
normalizers = [Replace("``", '"'), Replace("''", '"')]
if not self.original_tokenizer.keep_accents:
normalizers.append(NFKD())
normalizers.append(StripAccents())
if self.original_tokenizer.do_lower_case:
normalizers.append(Lowercase())
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
normalizers.append(Precompiled(precompiled_charsmap))
normalizers.append(Replace(Regex(" {2,}"), " "))
return Sequence(normalizers)
def post_processor(self, tokenizer):
return TemplateProcessing(
seq_a=["$0", "<sep>", "<cls>"],
seq_b=["$1", "<sep>"],
special_tokens=[
("<sep>", tokenizer.get_vocab()["<sep>"]),
("<cls>", tokenizer.get_vocab()["<cls>"]),
],
)
class ReformerConverter(SpmConverter):
pass
class PegasusConverter(SpmConverter):
offset = 103
def vocab(self, proto):
vocab = [
(self.original_tokenizer.pad_token, 0),
(self.original_tokenizer.eos_token, 0),
]
vocab += [(f"unk_{i}", -100) for i in range(2, 2 + self.offset)]
vocab += [(piece.piece, piece.score) for piece in proto.pieces[2:]]
return vocab
def unk_id(self, proto):
return proto.trainer_spec.unk_id + self.offset
def post_processor(self, tokenizer):
eos = self.original_tokenizer.eos_token
return TemplateProcessing(
seq_a=["$0", eos],
seq_b=["$1", eos],
special_tokens=[(eos, tokenizer.get_vocab()[eos])],
)
class T5Converter(SpmConverter):
def post_processor(self, tokenizer):
return TemplateProcessing(
seq_a=["$0", "</s>"],
seq_b=["$1", "</s>"],
special_tokens=[("</s>", tokenizer.get_vocab()["</s>"])],
)
CONVERTERS = {
"AlbertTokenizer": AlbertConverter,
"CamembertTokenizer": CamembertConverter,
"XLMRobertaTokenizer": XLMRobertaConverter,
"MBartTokenizer": MBartConverter,
"XLNetTokenizer": XLNetConverter,
"ReformerTokenizer": ReformerConverter,
"PegasusTokenizer": PegasusConverter,
"T5Tokenizer": T5Converter,
}
def check(pretrained, filename):
transformer_tokenizer = transformers.AutoTokenizer.from_pretrained(pretrained)
converter_class = CONVERTERS[transformer_tokenizer.__class__.__name__]
tokenizer = converter_class(transformer_tokenizer).converted()
now = datetime.datetime.now
trans_total_time = datetime.timedelta(seconds=0)
tok_total_time = datetime.timedelta(seconds=0)
with open(filename, "r") as f:
for i, line in enumerate(f):
line = line.strip()
start = now()
ids = transformer_tokenizer.encode(line)
trans = now()
tok_ids = tokenizer.encode(line).ids
tok = now()
trans_total_time += trans - start
tok_total_time += tok - trans
if ids != tok_ids:
if check_details(line, ids, tok_ids, transformer_tokenizer, tokenizer):
continue
assert ids == tok_ids, f"Error in line {i}: {line} {ids} != {tok_ids}"
tokenizer.save(f"{pretrained.replace('/', '-')}.json")
return ("OK", trans_total_time / tok_total_time)
def main():
pretraineds = [
"albert-base-v1",
"albert-large-v1",
"albert-xlarge-v1",
"albert-xxlarge-v1",
"albert-base-v2",
"albert-large-v2",
"albert-xlarge-v2",
"albert-xxlarge-v2",
"camembert-base",
"xlm-roberta-base",
"xlm-roberta-large",
"xlm-roberta-large-finetuned-conll02-dutch",
"xlm-roberta-large-finetuned-conll02-spanish",
"xlm-roberta-large-finetuned-conll03-english",
"xlm-roberta-large-finetuned-conll03-german",
"facebook/mbart-large-en-ro",
"facebook/mbart-large-cc25",
"xlnet-base-cased",
"xlnet-large-cased",
"google/reformer-crime-and-punishment",
"t5-small",
"google/pegasus-large",
]
parser = argparse.ArgumentParser()
parser.add_argument(
"--filename",
required=True,
type=str,
help="The filename that we are going to encode in both versions to check that conversion worked",
)
parser.add_argument(
"--models",
type=lambda s: s.split(","),
default=pretraineds,
help=f"The pretrained tokenizers you want to test agains, (default: {pretraineds})",
)
args = parser.parse_args()
print(args.filename)
model_len = 50
status_len = 6
speedup_len = 8
print(f"|{'Model':^{model_len}}|{'Status':^{status_len}}|{'Speedup':^{speedup_len}}|")
print(f"|{'-'*model_len}|{'-'*status_len}|{'-'*speedup_len}|")
for pretrained in args.models:
status, speedup = check(pretrained, args.filename)
print(f"|{pretrained:<{model_len}}|{status:^{status_len}}|{speedup:^{speedup_len - 1}.2f}x|")
if __name__ == "__main__":
main()
|