1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
import tokenizers
from argparse import ArgumentParser
import sentencepiece as spm
from collections import Counter
import json
import os
import datetime
try:
from termcolor import colored
has_color = True
except Exception:
has_color = False
def main():
parser = ArgumentParser("SentencePiece parity checker")
parser.add_argument(
"--input-file",
"-i",
type=str,
required=True,
help="Which files do you want to train from",
)
parser.add_argument(
"--model-file",
"-m",
type=str,
required=False,
default=None,
help="Use a pretrained token file",
)
parser.add_argument(
"--model-prefix",
type=str,
default="spm_parity",
help="Model prefix for spm_train",
)
parser.add_argument(
"--vocab-size",
"-v",
type=int,
default=8000,
help="Vocab size for spm_train",
)
parser.add_argument(
"--verbose",
action="store_true",
help="Verbosity",
)
parser.add_argument(
"--train",
action="store_true",
help="Instead of checking the encoder part, we check the trainer part",
)
parser.add_argument(
"--from-spm",
action="store_true",
help="Directly load the spm file with it's own normalizer",
)
args = parser.parse_args()
trained = False
if args.model_file is None:
spm.SentencePieceTrainer.Train(
f"--input={args.input_file} --model_prefix={args.model_prefix}"
f" --character_coverage=1.0"
f" --max_sentence_length=40000"
f" --num_threads=1"
f" --vocab_size={args.vocab_size}"
)
trained = True
args.model_file = f"{args.model_prefix}.model"
try:
if args.train:
check_train(args)
else:
check_encode(args)
finally:
if trained:
os.remove(f"{args.model_prefix}.model")
os.remove(f"{args.model_prefix}.vocab")
def check_train(args):
sp = spm.SentencePieceProcessor()
sp.Load(args.model_file)
tokenizer = tokenizers.SentencePieceUnigramTokenizer()
tokenizer.train(args.input_file, show_progress=False)
spm_tokens = 0
tokenizer_tokens = 0
with open(args.input_file, "r") as f:
for i, line in enumerate(f):
line = line.strip()
ids = sp.EncodeAsIds(line)
encoded = tokenizer.encode(line)
spm_tokens += len(ids)
tokenizer_tokens += len(encoded.ids)
vocab = [0 for i in range(args.vocab_size)]
spm_vocab = [0 for i in range(args.vocab_size)]
for token, index in tokenizer.get_vocab().items():
vocab[index] = token
for i in range(args.vocab_size):
spm_vocab[i] = sp.id_to_piece(i)
# 0 is unk in tokenizers, 0, 1, 2 are unk bos, eos in spm by default.
for i, (token, spm_token) in enumerate(zip(vocab[1:], spm_vocab[3:])):
if token != spm_token:
print(f"First different token is token {i} ({token} != {spm_token})")
break
print(f"Tokenizer used {tokenizer_tokens}, where spm used {spm_tokens}")
assert tokenizer_tokens < spm_tokens, "Our trainer should be at least more efficient than the SPM one"
print("Ok our trainer is at least more efficient than the SPM one")
def check_diff(spm_diff, tok_diff, sp, tok):
if spm_diff == list(reversed(tok_diff)):
# AAA -> AA+A vs A+AA case.
return True
elif len(spm_diff) == len(tok_diff) and tok.decode(spm_diff) == tok.decode(tok_diff):
# Second order OK
# Barrich -> Barr + ich vs Bar + rich
return True
spm_reencoded = sp.encode(sp.decode(spm_diff))
tok_reencoded = tok.encode(tok.decode(spm_diff)).ids
if spm_reencoded != spm_diff and spm_reencoded == tok_reencoded:
# Type 3 error.
# Snehagatha ->
# Sne, h, aga, th, a
# Sne, ha, gat, ha
# Encoding the wrong with sp does not even recover what spm gave us
# It fits tokenizer however...
return True
return False
def check_details(line, spm_ids, tok_ids, sp, tok):
# Encoding can be the same with same result AAA -> A + AA vs AA + A
# We can check that we use at least exactly the same number of tokens.
for i, (spm_id, tok_id) in enumerate(zip(spm_ids, tok_ids)):
if spm_id != tok_id:
break
first = i
for i, (spm_id, tok_id) in enumerate(zip(reversed(spm_ids), reversed(tok_ids))):
if spm_id != tok_id:
break
last = len(spm_ids) - i
spm_diff = spm_ids[first:last]
tok_diff = tok_ids[first:last]
if check_diff(spm_diff, tok_diff, sp, tok):
return True
if last - first > 5:
# We might have twice a single problem, attempt to subdivide the disjointed tokens into smaller problems
spms = Counter(spm_ids[first:last])
toks = Counter(tok_ids[first:last])
removable_tokens = {spm_ for (spm_, si) in spms.items() if toks.get(spm_, 0) == si}
min_width = 3
for i in range(last - first - min_width):
if all(spm_ids[first + i + j] in removable_tokens for j in range(min_width)):
possible_matches = [
k
for k in range(last - first - min_width)
if tok_ids[first + k : first + k + min_width] == spm_ids[first + i : first + i + min_width]
]
for j in possible_matches:
if check_diff(spm_ids[first : first + i], tok_ids[first : first + j], sp, tok) and check_details(
line,
spm_ids[first + i : last],
tok_ids[first + j : last],
sp,
tok,
):
return True
print(f"Spm: {[tok.decode([spm_ids[i]]) for i in range(first, last)]}")
try:
print(f"Tok: {[tok.decode([tok_ids[i]]) for i in range(first, last)]}")
except Exception:
pass
ok_start = tok.decode(spm_ids[:first])
ok_end = tok.decode(spm_ids[last:])
wrong = tok.decode(spm_ids[first:last])
print()
if has_color:
print(f"{colored(ok_start, 'grey')}{colored(wrong, 'red')}{colored(ok_end, 'grey')}")
else:
print(wrong)
return False
def check_encode(args):
sp = spm.SentencePieceProcessor()
sp.Load(args.model_file)
if args.from_spm:
tok = tokenizers.SentencePieceUnigramTokenizer.from_spm(args.model_file)
else:
vocab = [(sp.id_to_piece(i), sp.get_score(i)) for i in range(sp.piece_size())]
unk_id = sp.unk_id()
tok = tokenizers.SentencePieceUnigramTokenizer(vocab, unk_id)
perfect = 0
imperfect = 0
wrong = 0
now = datetime.datetime.now
spm_total_time = datetime.timedelta(seconds=0)
tok_total_time = datetime.timedelta(seconds=0)
with open(args.input_file, "r", encoding="utf-8-sig") as f:
for i, line in enumerate(f):
line = line.strip()
start = now()
ids = sp.EncodeAsIds(line)
spm_time = now()
encoded = tok.encode(line)
tok_time = now()
spm_total_time += spm_time - start
tok_total_time += tok_time - spm_time
if args.verbose:
if i % 10000 == 0:
print(f"({perfect} / {imperfect} / {wrong} ----- {perfect + imperfect + wrong})")
print(f"SPM: {spm_total_time} - TOK: {tok_total_time}")
if ids != encoded.ids:
if check_details(line, ids, encoded.ids, sp, tok):
imperfect += 1
continue
else:
wrong += 1
else:
perfect += 1
assert (
ids == encoded.ids
), f"line {i}: {line} : \n\n{ids}\n{encoded.ids}\n{list(zip(encoded.ids, encoded.tokens))}"
print(f"({perfect} / {imperfect} / {wrong} ----- {perfect + imperfect + wrong})")
total = perfect + imperfect + wrong
print(f"Accuracy {perfect * 100 / total:.2f} Slowdown : {tok_total_time/ spm_total_time:.2f}")
if __name__ == "__main__":
main()
|