File: spm_parity_check.py

package info (click to toggle)
tokenizers 0.20.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 5,480 kB
  • sloc: python: 4,499; javascript: 419; makefile: 124
file content (263 lines) | stat: -rw-r--r-- 8,373 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import tokenizers
from argparse import ArgumentParser
import sentencepiece as spm
from collections import Counter
import json
import os
import datetime

try:
    from termcolor import colored

    has_color = True
except Exception:
    has_color = False


def main():
    parser = ArgumentParser("SentencePiece parity checker")
    parser.add_argument(
        "--input-file",
        "-i",
        type=str,
        required=True,
        help="Which files do you want to train from",
    )
    parser.add_argument(
        "--model-file",
        "-m",
        type=str,
        required=False,
        default=None,
        help="Use a pretrained token file",
    )
    parser.add_argument(
        "--model-prefix",
        type=str,
        default="spm_parity",
        help="Model prefix for spm_train",
    )
    parser.add_argument(
        "--vocab-size",
        "-v",
        type=int,
        default=8000,
        help="Vocab size for spm_train",
    )
    parser.add_argument(
        "--verbose",
        action="store_true",
        help="Verbosity",
    )
    parser.add_argument(
        "--train",
        action="store_true",
        help="Instead of checking the encoder part, we check the trainer part",
    )
    parser.add_argument(
        "--from-spm",
        action="store_true",
        help="Directly load the spm file with it's own normalizer",
    )

    args = parser.parse_args()

    trained = False
    if args.model_file is None:
        spm.SentencePieceTrainer.Train(
            f"--input={args.input_file} --model_prefix={args.model_prefix}"
            f" --character_coverage=1.0"
            f" --max_sentence_length=40000"
            f" --num_threads=1"
            f" --vocab_size={args.vocab_size}"
        )
        trained = True
        args.model_file = f"{args.model_prefix}.model"

    try:
        if args.train:
            check_train(args)
        else:
            check_encode(args)
    finally:
        if trained:
            os.remove(f"{args.model_prefix}.model")
            os.remove(f"{args.model_prefix}.vocab")


def check_train(args):
    sp = spm.SentencePieceProcessor()
    sp.Load(args.model_file)

    tokenizer = tokenizers.SentencePieceUnigramTokenizer()
    tokenizer.train(args.input_file, show_progress=False)

    spm_tokens = 0
    tokenizer_tokens = 0

    with open(args.input_file, "r") as f:
        for i, line in enumerate(f):
            line = line.strip()
            ids = sp.EncodeAsIds(line)

            encoded = tokenizer.encode(line)

            spm_tokens += len(ids)
            tokenizer_tokens += len(encoded.ids)

    vocab = [0 for i in range(args.vocab_size)]
    spm_vocab = [0 for i in range(args.vocab_size)]

    for token, index in tokenizer.get_vocab().items():
        vocab[index] = token

    for i in range(args.vocab_size):
        spm_vocab[i] = sp.id_to_piece(i)

    # 0 is unk in tokenizers, 0, 1, 2 are unk bos, eos in spm by default.
    for i, (token, spm_token) in enumerate(zip(vocab[1:], spm_vocab[3:])):
        if token != spm_token:
            print(f"First different token is token {i} ({token} != {spm_token})")
            break

    print(f"Tokenizer used {tokenizer_tokens}, where spm used {spm_tokens}")
    assert tokenizer_tokens < spm_tokens, "Our trainer should be at least more efficient than the SPM one"
    print("Ok our trainer is at least more efficient than the SPM one")


def check_diff(spm_diff, tok_diff, sp, tok):
    if spm_diff == list(reversed(tok_diff)):
        # AAA -> AA+A vs A+AA case.
        return True
    elif len(spm_diff) == len(tok_diff) and tok.decode(spm_diff) == tok.decode(tok_diff):
        # Second order OK
        # Barrich -> Barr + ich vs Bar + rich
        return True
    spm_reencoded = sp.encode(sp.decode(spm_diff))
    tok_reencoded = tok.encode(tok.decode(spm_diff)).ids
    if spm_reencoded != spm_diff and spm_reencoded == tok_reencoded:
        # Type 3 error.
        # Snehagatha ->
        #       Sne, h, aga, th, a
        #       Sne, ha, gat, ha
        # Encoding the wrong with sp does not even recover what spm gave us
        # It fits tokenizer however...
        return True
    return False


def check_details(line, spm_ids, tok_ids, sp, tok):
    # Encoding can be the same with same result AAA -> A + AA vs AA + A
    # We can check that we use at least exactly the same number of tokens.
    for i, (spm_id, tok_id) in enumerate(zip(spm_ids, tok_ids)):
        if spm_id != tok_id:
            break
    first = i
    for i, (spm_id, tok_id) in enumerate(zip(reversed(spm_ids), reversed(tok_ids))):
        if spm_id != tok_id:
            break
    last = len(spm_ids) - i

    spm_diff = spm_ids[first:last]
    tok_diff = tok_ids[first:last]

    if check_diff(spm_diff, tok_diff, sp, tok):
        return True

    if last - first > 5:
        # We might have twice a single problem, attempt to subdivide the disjointed tokens into smaller problems
        spms = Counter(spm_ids[first:last])
        toks = Counter(tok_ids[first:last])

        removable_tokens = {spm_ for (spm_, si) in spms.items() if toks.get(spm_, 0) == si}
        min_width = 3
        for i in range(last - first - min_width):
            if all(spm_ids[first + i + j] in removable_tokens for j in range(min_width)):
                possible_matches = [
                    k
                    for k in range(last - first - min_width)
                    if tok_ids[first + k : first + k + min_width] == spm_ids[first + i : first + i + min_width]
                ]
                for j in possible_matches:
                    if check_diff(spm_ids[first : first + i], tok_ids[first : first + j], sp, tok) and check_details(
                        line,
                        spm_ids[first + i : last],
                        tok_ids[first + j : last],
                        sp,
                        tok,
                    ):
                        return True

    print(f"Spm: {[tok.decode([spm_ids[i]]) for i in range(first, last)]}")
    try:
        print(f"Tok: {[tok.decode([tok_ids[i]]) for i in range(first, last)]}")
    except Exception:
        pass

    ok_start = tok.decode(spm_ids[:first])
    ok_end = tok.decode(spm_ids[last:])
    wrong = tok.decode(spm_ids[first:last])
    print()
    if has_color:
        print(f"{colored(ok_start, 'grey')}{colored(wrong, 'red')}{colored(ok_end, 'grey')}")
    else:
        print(wrong)
    return False


def check_encode(args):
    sp = spm.SentencePieceProcessor()
    sp.Load(args.model_file)

    if args.from_spm:
        tok = tokenizers.SentencePieceUnigramTokenizer.from_spm(args.model_file)
    else:
        vocab = [(sp.id_to_piece(i), sp.get_score(i)) for i in range(sp.piece_size())]
        unk_id = sp.unk_id()
        tok = tokenizers.SentencePieceUnigramTokenizer(vocab, unk_id)

    perfect = 0
    imperfect = 0
    wrong = 0
    now = datetime.datetime.now
    spm_total_time = datetime.timedelta(seconds=0)
    tok_total_time = datetime.timedelta(seconds=0)
    with open(args.input_file, "r", encoding="utf-8-sig") as f:
        for i, line in enumerate(f):
            line = line.strip()

            start = now()
            ids = sp.EncodeAsIds(line)
            spm_time = now()

            encoded = tok.encode(line)
            tok_time = now()

            spm_total_time += spm_time - start
            tok_total_time += tok_time - spm_time

            if args.verbose:
                if i % 10000 == 0:
                    print(f"({perfect} / {imperfect} / {wrong} ----- {perfect + imperfect + wrong})")
                    print(f"SPM: {spm_total_time} - TOK: {tok_total_time}")

            if ids != encoded.ids:
                if check_details(line, ids, encoded.ids, sp, tok):
                    imperfect += 1
                    continue
                else:
                    wrong += 1
            else:
                perfect += 1

            assert (
                ids == encoded.ids
            ), f"line {i}: {line} : \n\n{ids}\n{encoded.ids}\n{list(zip(encoded.ids, encoded.tokens))}"

    print(f"({perfect} / {imperfect} / {wrong} ----- {perfect + imperfect + wrong})")
    total = perfect + imperfect + wrong
    print(f"Accuracy {perfect * 100 / total:.2f} Slowdown : {tok_total_time/ spm_total_time:.2f}")


if __name__ == "__main__":
    main()