1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
/*
** FFT and FHT routines
** Copyright 1988, 1993; Ron Mayer
**
** fht(fz,n);
** Does a hartley transform of "n" points in the array "fz".
**
** NOTE: This routine uses at least 2 patented algorithms, and may be
** under the restrictions of a bunch of different organizations.
** Although I wrote it completely myself; it is kind of a derivative
** of a routine I once authored and released under the GPL, so it
** may fall under the free software foundation's restrictions;
** it was worked on as a Stanford Univ project, so they claim
** some rights to it; it was further optimized at work here, so
** I think this company claims parts of it. The patents are
** held by R. Bracewell (the FHT algorithm) and O. Buneman (the
** trig generator), both at Stanford Univ.
** If it were up to me, I'd say go do whatever you want with it;
** but it would be polite to give credit to the following people
** if you use this anywhere:
** Euler - probable inventor of the fourier transform.
** Gauss - probable inventor of the FFT.
** Hartley - probable inventor of the hartley transform.
** Buneman - for a really cool trig generator
** Mayer(me) - for authoring this particular version and
** including all the optimizations in one package.
** Thanks,
** Ron Mayer; mayer@acuson.com
**
*/
#include <math.h>
#define FLOAT float
#define SQRT2 1.4142135623730951454746218587388284504414
void fft(FLOAT *x_real, FLOAT *x_imag, FLOAT *energy, FLOAT *phi, int N);
void fft2(FLOAT *x_real, FLOAT *energy, int N);
static FLOAT costab[20]=
{
.00000000000000000000000000000000000000000000000000,
.70710678118654752440084436210484903928483593768847,
.92387953251128675612818318939678828682241662586364,
.98078528040323044912618223613423903697393373089333,
.99518472667219688624483695310947992157547486872985,
.99879545620517239271477160475910069444320361470461,
.99969881869620422011576564966617219685006108125772,
.99992470183914454092164649119638322435060646880221,
.99998117528260114265699043772856771617391725094433,
.99999529380957617151158012570011989955298763362218,
.99999882345170190992902571017152601904826792288976,
.99999970586288221916022821773876567711626389934930,
.99999992646571785114473148070738785694820115568892,
.99999998161642929380834691540290971450507605124278,
.99999999540410731289097193313960614895889430318945,
.99999999885102682756267330779455410840053741619428
};
static FLOAT sintab[20]=
{
1.0000000000000000000000000000000000000000000000000,
.70710678118654752440084436210484903928483593768846,
.38268343236508977172845998403039886676134456248561,
.19509032201612826784828486847702224092769161775195,
.09801714032956060199419556388864184586113667316749,
.04906767432741801425495497694268265831474536302574,
.02454122852291228803173452945928292506546611923944,
.01227153828571992607940826195100321214037231959176,
.00613588464915447535964023459037258091705788631738,
.00306795676296597627014536549091984251894461021344,
.00153398018628476561230369715026407907995486457522,
.00076699031874270452693856835794857664314091945205,
.00038349518757139558907246168118138126339502603495,
.00019174759731070330743990956198900093346887403385,
.00009587379909597734587051721097647635118706561284,
.00004793689960306688454900399049465887274686668768
};
/* This is a simplified version for n an even power of 2 */
/* MFC: In the case of LayerII encoding, n==1024 always. */
static void fht(FLOAT *fz)
{
int i,k,k1,k2,k3,k4,kx;
FLOAT *fi,*fn,*gi;
FLOAT t_c,t_s;
FLOAT a;
static const struct
{
unsigned short k1, k2;
}
k1k2tab[8*62] = {
{0x020,0x010},{0x040,0x008},{0x050,0x028},{0x060,0x018},{0x068,0x058},{0x070,0x038},{0x080,0x004},{0x088,0x044},
{0x090,0x024},{0x098,0x064},{0x0a0,0x014},{0x0a4,0x094},{0x0a8,0x054},{0x0b0,0x034},{0x0b8,0x074},{0x0c0,0x00c},
{0x0c4,0x08c},{0x0c8,0x04c},{0x0d0,0x02c},{0x0d4,0x0ac},{0x0d8,0x06c},{0x0e0,0x01c},{0x0e4,0x09c},{0x0e8,0x05c},
{0x0ec,0x0dc},{0x0f0,0x03c},{0x0f4,0x0bc},{0x0f8,0x07c},{0x100,0x002},{0x104,0x082},{0x108,0x042},{0x10c,0x0c2},
{0x110,0x022},{0x114,0x0a2},{0x118,0x062},{0x11c,0x0e2},{0x120,0x012},{0x122,0x112},{0x124,0x092},{0x128,0x052},
{0x12c,0x0d2},{0x130,0x032},{0x134,0x0b2},{0x138,0x072},{0x13c,0x0f2},{0x140,0x00a},{0x142,0x10a},{0x144,0x08a},
{0x148,0x04a},{0x14c,0x0ca},{0x150,0x02a},{0x152,0x12a},{0x154,0x0aa},{0x158,0x06a},{0x15c,0x0ea},{0x160,0x01a},
{0x162,0x11a},{0x164,0x09a},{0x168,0x05a},{0x16a,0x15a},{0x16c,0x0da},{0x170,0x03a},{0x172,0x13a},{0x174,0x0ba},
{0x178,0x07a},{0x17c,0x0fa},{0x180,0x006},{0x182,0x106},{0x184,0x086},{0x188,0x046},{0x18a,0x146},{0x18c,0x0c6},
{0x190,0x026},{0x192,0x126},{0x194,0x0a6},{0x198,0x066},{0x19a,0x166},{0x19c,0x0e6},{0x1a0,0x016},{0x1a2,0x116},
{0x1a4,0x096},{0x1a6,0x196},{0x1a8,0x056},{0x1aa,0x156},{0x1ac,0x0d6},{0x1b0,0x036},{0x1b2,0x136},{0x1b4,0x0b6},
{0x1b8,0x076},{0x1ba,0x176},{0x1bc,0x0f6},{0x1c0,0x00e},{0x1c2,0x10e},{0x1c4,0x08e},{0x1c6,0x18e},{0x1c8,0x04e},
{0x1ca,0x14e},{0x1cc,0x0ce},{0x1d0,0x02e},{0x1d2,0x12e},{0x1d4,0x0ae},{0x1d6,0x1ae},{0x1d8,0x06e},{0x1da,0x16e},
{0x1dc,0x0ee},{0x1e0,0x01e},{0x1e2,0x11e},{0x1e4,0x09e},{0x1e6,0x19e},{0x1e8,0x05e},{0x1ea,0x15e},{0x1ec,0x0de},
{0x1ee,0x1de},{0x1f0,0x03e},{0x1f2,0x13e},{0x1f4,0x0be},{0x1f6,0x1be},{0x1f8,0x07e},{0x1fa,0x17e},{0x1fc,0x0fe},
{0x200,0x001},{0x202,0x101},{0x204,0x081},{0x206,0x181},{0x208,0x041},{0x20a,0x141},{0x20c,0x0c1},{0x20e,0x1c1},
{0x210,0x021},{0x212,0x121},{0x214,0x0a1},{0x216,0x1a1},{0x218,0x061},{0x21a,0x161},{0x21c,0x0e1},{0x21e,0x1e1},
{0x220,0x011},{0x221,0x211},{0x222,0x111},{0x224,0x091},{0x226,0x191},{0x228,0x051},{0x22a,0x151},{0x22c,0x0d1},
{0x22e,0x1d1},{0x230,0x031},{0x232,0x131},{0x234,0x0b1},{0x236,0x1b1},{0x238,0x071},{0x23a,0x171},{0x23c,0x0f1},
{0x23e,0x1f1},{0x240,0x009},{0x241,0x209},{0x242,0x109},{0x244,0x089},{0x246,0x189},{0x248,0x049},{0x24a,0x149},
{0x24c,0x0c9},{0x24e,0x1c9},{0x250,0x029},{0x251,0x229},{0x252,0x129},{0x254,0x0a9},{0x256,0x1a9},{0x258,0x069},
{0x25a,0x169},{0x25c,0x0e9},{0x25e,0x1e9},{0x260,0x019},{0x261,0x219},{0x262,0x119},{0x264,0x099},{0x266,0x199},
{0x268,0x059},{0x269,0x259},{0x26a,0x159},{0x26c,0x0d9},{0x26e,0x1d9},{0x270,0x039},{0x271,0x239},{0x272,0x139},
{0x274,0x0b9},{0x276,0x1b9},{0x278,0x079},{0x27a,0x179},{0x27c,0x0f9},{0x27e,0x1f9},{0x280,0x005},{0x281,0x205},
{0x282,0x105},{0x284,0x085},{0x286,0x185},{0x288,0x045},{0x289,0x245},{0x28a,0x145},{0x28c,0x0c5},{0x28e,0x1c5},
{0x290,0x025},{0x291,0x225},{0x292,0x125},{0x294,0x0a5},{0x296,0x1a5},{0x298,0x065},{0x299,0x265},{0x29a,0x165},
{0x29c,0x0e5},{0x29e,0x1e5},{0x2a0,0x015},{0x2a1,0x215},{0x2a2,0x115},{0x2a4,0x095},{0x2a5,0x295},{0x2a6,0x195},
{0x2a8,0x055},{0x2a9,0x255},{0x2aa,0x155},{0x2ac,0x0d5},{0x2ae,0x1d5},{0x2b0,0x035},{0x2b1,0x235},{0x2b2,0x135},
{0x2b4,0x0b5},{0x2b6,0x1b5},{0x2b8,0x075},{0x2b9,0x275},{0x2ba,0x175},{0x2bc,0x0f5},{0x2be,0x1f5},{0x2c0,0x00d},
{0x2c1,0x20d},{0x2c2,0x10d},{0x2c4,0x08d},{0x2c5,0x28d},{0x2c6,0x18d},{0x2c8,0x04d},{0x2c9,0x24d},{0x2ca,0x14d},
{0x2cc,0x0cd},{0x2ce,0x1cd},{0x2d0,0x02d},{0x2d1,0x22d},{0x2d2,0x12d},{0x2d4,0x0ad},{0x2d5,0x2ad},{0x2d6,0x1ad},
{0x2d8,0x06d},{0x2d9,0x26d},{0x2da,0x16d},{0x2dc,0x0ed},{0x2de,0x1ed},{0x2e0,0x01d},{0x2e1,0x21d},{0x2e2,0x11d},
{0x2e4,0x09d},{0x2e5,0x29d},{0x2e6,0x19d},{0x2e8,0x05d},{0x2e9,0x25d},{0x2ea,0x15d},{0x2ec,0x0dd},{0x2ed,0x2dd},
{0x2ee,0x1dd},{0x2f0,0x03d},{0x2f1,0x23d},{0x2f2,0x13d},{0x2f4,0x0bd},{0x2f5,0x2bd},{0x2f6,0x1bd},{0x2f8,0x07d},
{0x2f9,0x27d},{0x2fa,0x17d},{0x2fc,0x0fd},{0x2fe,0x1fd},{0x300,0x003},{0x301,0x203},{0x302,0x103},{0x304,0x083},
{0x305,0x283},{0x306,0x183},{0x308,0x043},{0x309,0x243},{0x30a,0x143},{0x30c,0x0c3},{0x30d,0x2c3},{0x30e,0x1c3},
{0x310,0x023},{0x311,0x223},{0x312,0x123},{0x314,0x0a3},{0x315,0x2a3},{0x316,0x1a3},{0x318,0x063},{0x319,0x263},
{0x31a,0x163},{0x31c,0x0e3},{0x31d,0x2e3},{0x31e,0x1e3},{0x320,0x013},{0x321,0x213},{0x322,0x113},{0x323,0x313},
{0x324,0x093},{0x325,0x293},{0x326,0x193},{0x328,0x053},{0x329,0x253},{0x32a,0x153},{0x32c,0x0d3},{0x32d,0x2d3},
{0x32e,0x1d3},{0x330,0x033},{0x331,0x233},{0x332,0x133},{0x334,0x0b3},{0x335,0x2b3},{0x336,0x1b3},{0x338,0x073},
{0x339,0x273},{0x33a,0x173},{0x33c,0x0f3},{0x33d,0x2f3},{0x33e,0x1f3},{0x340,0x00b},{0x341,0x20b},{0x342,0x10b},
{0x343,0x30b},{0x344,0x08b},{0x345,0x28b},{0x346,0x18b},{0x348,0x04b},{0x349,0x24b},{0x34a,0x14b},{0x34c,0x0cb},
{0x34d,0x2cb},{0x34e,0x1cb},{0x350,0x02b},{0x351,0x22b},{0x352,0x12b},{0x353,0x32b},{0x354,0x0ab},{0x355,0x2ab},
{0x356,0x1ab},{0x358,0x06b},{0x359,0x26b},{0x35a,0x16b},{0x35c,0x0eb},{0x35d,0x2eb},{0x35e,0x1eb},{0x360,0x01b},
{0x361,0x21b},{0x362,0x11b},{0x363,0x31b},{0x364,0x09b},{0x365,0x29b},{0x366,0x19b},{0x368,0x05b},{0x369,0x25b},
{0x36a,0x15b},{0x36b,0x35b},{0x36c,0x0db},{0x36d,0x2db},{0x36e,0x1db},{0x370,0x03b},{0x371,0x23b},{0x372,0x13b},
{0x373,0x33b},{0x374,0x0bb},{0x375,0x2bb},{0x376,0x1bb},{0x378,0x07b},{0x379,0x27b},{0x37a,0x17b},{0x37c,0x0fb},
{0x37d,0x2fb},{0x37e,0x1fb},{0x380,0x007},{0x381,0x207},{0x382,0x107},{0x383,0x307},{0x384,0x087},{0x385,0x287},
{0x386,0x187},{0x388,0x047},{0x389,0x247},{0x38a,0x147},{0x38b,0x347},{0x38c,0x0c7},{0x38d,0x2c7},{0x38e,0x1c7},
{0x390,0x027},{0x391,0x227},{0x392,0x127},{0x393,0x327},{0x394,0x0a7},{0x395,0x2a7},{0x396,0x1a7},{0x398,0x067},
{0x399,0x267},{0x39a,0x167},{0x39b,0x367},{0x39c,0x0e7},{0x39d,0x2e7},{0x39e,0x1e7},{0x3a0,0x017},{0x3a1,0x217},
{0x3a2,0x117},{0x3a3,0x317},{0x3a4,0x097},{0x3a5,0x297},{0x3a6,0x197},{0x3a7,0x397},{0x3a8,0x057},{0x3a9,0x257},
{0x3aa,0x157},{0x3ab,0x357},{0x3ac,0x0d7},{0x3ad,0x2d7},{0x3ae,0x1d7},{0x3b0,0x037},{0x3b1,0x237},{0x3b2,0x137},
{0x3b3,0x337},{0x3b4,0x0b7},{0x3b5,0x2b7},{0x3b6,0x1b7},{0x3b8,0x077},{0x3b9,0x277},{0x3ba,0x177},{0x3bb,0x377},
{0x3bc,0x0f7},{0x3bd,0x2f7},{0x3be,0x1f7},{0x3c0,0x00f},{0x3c1,0x20f},{0x3c2,0x10f},{0x3c3,0x30f},{0x3c4,0x08f},
{0x3c5,0x28f},{0x3c6,0x18f},{0x3c7,0x38f},{0x3c8,0x04f},{0x3c9,0x24f},{0x3ca,0x14f},{0x3cb,0x34f},{0x3cc,0x0cf},
{0x3cd,0x2cf},{0x3ce,0x1cf},{0x3d0,0x02f},{0x3d1,0x22f},{0x3d2,0x12f},{0x3d3,0x32f},{0x3d4,0x0af},{0x3d5,0x2af},
{0x3d6,0x1af},{0x3d7,0x3af},{0x3d8,0x06f},{0x3d9,0x26f},{0x3da,0x16f},{0x3db,0x36f},{0x3dc,0x0ef},{0x3dd,0x2ef},
{0x3de,0x1ef},{0x3e0,0x01f},{0x3e1,0x21f},{0x3e2,0x11f},{0x3e3,0x31f},{0x3e4,0x09f},{0x3e5,0x29f},{0x3e6,0x19f},
{0x3e7,0x39f},{0x3e8,0x05f},{0x3e9,0x25f},{0x3ea,0x15f},{0x3eb,0x35f},{0x3ec,0x0df},{0x3ed,0x2df},{0x3ee,0x1df},
{0x3ef,0x3df},{0x3f0,0x03f},{0x3f1,0x23f},{0x3f2,0x13f},{0x3f3,0x33f},{0x3f4,0x0bf},{0x3f5,0x2bf},{0x3f6,0x1bf},
{0x3f7,0x3bf},{0x3f8,0x07f},{0x3f9,0x27f},{0x3fa,0x17f},{0x3fb,0x37f},{0x3fc,0x0ff},{0x3fd,0x2ff},{0x3fe,0x1ff}
};
{
int i;
for (i = 0; i < sizeof k1k2tab / sizeof k1k2tab[0]; ++i)
{
k1 = k1k2tab[i].k1;
k2 = k1k2tab[i].k2;
a = fz[k1];
fz[k1] = fz[k2];
fz[k2] = a;
}
}
for (fi=fz,fn=fz+1024;fi<fn;fi+=4)
{
FLOAT f0,f1,f2,f3;
f1 = fi[0 ]-fi[1 ];
f0 = fi[0 ]+fi[1 ];
f3 = fi[2 ]-fi[3 ];
f2 = fi[2 ]+fi[3 ];
fi[2 ] = (f0-f2);
fi[0 ] = (f0+f2);
fi[3 ] = (f1-f3);
fi[1 ] = (f1+f3);
}
k=0;
do
{
FLOAT s1,c1;
k += 2;
k1 = 1 << k;
k2 = k1 << 1;
k4 = k2 << 1;
k3 = k2 + k1;
kx = k1 >> 1;
fi = fz;
gi = fi + kx;
fn = fz + 1024;
do
{
FLOAT g0,f0,f1,g1,f2,g2,f3,g3;
f1 = fi[0 ] - fi[k1];
f0 = fi[0 ] + fi[k1];
f3 = fi[k2] - fi[k3];
f2 = fi[k2] + fi[k3];
fi[k2] = f0 - f2;
fi[0 ] = f0 + f2;
fi[k3] = f1 - f3;
fi[k1] = f1 + f3;
g1 = gi[0 ] - gi[k1];
g0 = gi[0 ] + gi[k1];
g3 = SQRT2 * gi[k3];
g2 = SQRT2 * gi[k2];
gi[k2] = g0 - g2;
gi[0 ] = g0 + g2;
gi[k3] = g1 - g3;
gi[k1] = g1 + g3;
gi += k4;
fi += k4;
}
while (fi<fn);
t_c = costab[k];
t_s = sintab[k];
c1 = 1;
s1 = 0;
for (i=1;i<kx;i++)
{
FLOAT c2,s2;
FLOAT t = c1;
c1 = t*t_c - s1*t_s;
s1 = t*t_s + s1*t_c;
c2 = c1*c1 - s1*s1;
s2 = 2*(c1*s1);
fn = fz + 1024;
fi = fz +i;
gi = fz +k1-i;
do
{
FLOAT a,b,g0,f0,f1,g1,f2,g2,f3,g3;
b = s2*fi[k1] - c2*gi[k1];
a = c2*fi[k1] + s2*gi[k1];
f1 = fi[0 ] - a;
f0 = fi[0 ] + a;
g1 = gi[0 ] - b;
g0 = gi[0 ] + b;
b = s2*fi[k3] - c2*gi[k3];
a = c2*fi[k3] + s2*gi[k3];
f3 = fi[k2] - a;
f2 = fi[k2] + a;
g3 = gi[k2] - b;
g2 = gi[k2] + b;
b = s1*f2 - c1*g3;
a = c1*f2 + s1*g3;
fi[k2] = f0 - a;
fi[0 ] = f0 + a;
gi[k3] = g1 - b;
gi[k1] = g1 + b;
b = c1*g2 - s1*f3;
a = s1*g2 + c1*f3;
gi[k2] = g0 - a;
gi[0 ] = g0 + a;
fi[k3] = f1 - b;
fi[k1] = f1 + b;
gi += k4;
fi += k4;
}
while (fi<fn);
}
}
while (k4<1024);
}
void fft(FLOAT *x_real, FLOAT *x_imag, FLOAT *energy, FLOAT *phi, int N)
{
FLOAT a,b;
int i,j;
fht(x_real);
energy[0] = x_real[0] * x_real[0];
for (i=1,j=N-1;i<N/2;i++,j--)
{
a = x_real[i];
b = x_real[j];
energy[i]=(a*a + b*b)/2.0;
if (energy[i] < 0.0005)
{
energy[i] = 0.0005;
phi[i] = 0;
}
else /* OPTIMZE this. LAME does without these atan2 calls at all */
phi[i] = 0.7853981 + atan2 (-(double)a, (double)b);
}
energy[N/2] = x_real[N/2] * x_real[N/2];
phi[N/2] = atan2 (0.0, (double)x_real[N/2]);
for (i=1;i<N/2;i++)
{
energy[N/2+i] = energy[N/2-i];
phi [N/2+i] = -phi[N/2-i];
}
}
void fft2(FLOAT *x_real, FLOAT *energy, int N)
{
FLOAT a,b;
int i,j;
fht(x_real);
energy[0] = x_real[0] * x_real[0];
for (i=1,j=N-1;i<N/2;i++,j--)
{
a = x_real[i];
b = x_real[j];
energy[i]=(a*a + b*b)/2.0;
}
energy[N/2] = x_real[N/2] * x_real[N/2];
}
|