1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
#include "common.h"
#include "encoder.h"
/* The static variables "r", "phi_sav", "new", "old" and "oldest" have */
/* to be remembered for the unpredictability measure. For "r" and */
/* "phi_sav", the first index from the left is the channel select and */
/* the second index is the "age" of the data. */
static int new = 0, old = 1, oldest = 0;
static int init = 0, flush, sync_flush, syncsize, sfreq_idx;
/* The following static variables are constants. */
static double nmt = 5.5;
static FLOAT crit_band[27] = {0, 100, 200, 300, 400, 510, 630, 770,
920, 1080, 1270,1480,1720,2000,2320, 2700,
3150, 3700, 4400,5300,6400,7700,9500,12000,
15500,25000,30000};
static FLOAT bmax[27] = {20.0, 20.0, 20.0, 20.0, 20.0, 17.0, 15.0,
10.0, 7.0, 4.4, 4.5, 4.5, 4.5, 4.5,
4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5,
4.5, 4.5, 4.5, 3.5, 3.5, 3.5};
static FLOAT *grouped_c, *grouped_e, *nb, *cb, *ecb, *bc;
static FLOAT *wsamp_r, *wsamp_i, *phi, *energy;
static FLOAT *c, *fthr;
static F32 *snrtmp;
static int *numlines;
static int *partition;
static FLOAT *cbval, *rnorm;
static FLOAT *window;
static FLOAT *absthr;
static double *tmn;
static FCB *s;
static FHBLK *lthr;
static F2HBLK *r, *phi_sav;
void psycho_ii_init(double sfreq);
void psycho_ii(short int *buffer,
short int savebuf[1056],
int chn,
FLOAT snr32[32],
double sfreq)
/* to match prototype : float args are always double */
{
unsigned int i, j, k;
FLOAT r_prime, phi_prime;
FLOAT minthres, sum_energy;
double tb, temp1, temp2, temp3;
if(init==0)
{
psycho_ii_init(sfreq);
init++;
}
for(i=0; i<2; i++)
{
/*****************************************************************************
* Net offset is 480 samples (1056-576) for layer 2; this is because one must*
* stagger input data by 256 samples to synchronize psychoacoustic model with*
* filter bank outputs, then stagger so that center of 1024 FFT window lines *
* up with center of 576 "new" audio samples. *
flush = 384*3.0/2.0; = 576
syncsize = 1056;
sync_flush = syncsize - flush; 480
BLKSIZE = 1024
*****************************************************************************/
#ifdef MFCMISC
for (j=0;j<480;j++)
{
savebuf[j] = savebuf[j+flush];
wsamp_r[j] = window[j]*((FLOAT) savebuf[j]);
}
for (;j<1024;j++)
{
savebuf[j] = *buffer++;
wsamp_r[j] = window[j]*((FLOAT) savebuf[j]);
}
for (;j<1056;j++)
savebuf[j] = *buffer++;
#else
for(j=0; j<syncsize; j++)
{
if(j<(sync_flush))savebuf[j] = savebuf[j+flush];
else savebuf[j] = *buffer++;
if(j<BLKSIZE)
{
wsamp_r[j] = window[j]*((FLOAT) savebuf[j]);
wsamp_i[j] = 0;
}
}
#endif
/**Compute FFT****************************************************************/
fft(wsamp_r,wsamp_i,energy,phi,1024);
/*****************************************************************************
* calculate the unpredictability measure, given energy[f] and phi[f] *
*****************************************************************************/
/*only update data "age" pointers after you are done with both channels */
/*for layer 1 computations, for the layer 2 double computations, the pointers*/
/*are reset automatically on the second pass */
{
if(new==0)
{
new = 1;
oldest = 1;
}
else
{
new = 0;
oldest = 0;
}
if(old==0)old = 1;
else old = 0;
}
for(j=0; j<HBLKSIZE; j++)
{
r_prime = 2.0 * r[chn][old][j] - r[chn][oldest][j];
phi_prime = 2.0 * phi_sav[chn][old][j] - phi_sav[chn][oldest][j];
r[chn][new][j] = sqrt((double) energy[j]);
phi_sav[chn][new][j] = phi[j];
temp1=r[chn][new][j] * cos((double) phi[j]) - r_prime * cos((double) phi_prime);
temp2=r[chn][new][j] * sin((double) phi[j]) - r_prime * sin((double) phi_prime);
temp3=r[chn][new][j] + fabs((double)r_prime);
if(temp3 != 0)c[j]=sqrt(temp1*temp1+temp2*temp2)/temp3;
else c[j] = 0;
}
/*****************************************************************************
* Calculate the grouped, energy-weighted, unpredictability measure, *
* grouped_c[], and the grouped energy. grouped_e[] *
*****************************************************************************/
#ifdef MFCMISC
memset (grouped_e, 0, sizeof (FCB));
memset (grouped_c, 0, sizeof (FCB));
memset (ecb, 0, sizeof (FCB));
memset (cb, 0, sizeof (FCB));
#else
for(j=1;j<CBANDS;j++)
{
grouped_e[j] = 0;
grouped_c[j] = 0;
}
#endif
grouped_e[0] = energy[0];
grouped_c[0] = energy[0]*c[0];
for(j=1;j<HBLKSIZE;j++)
{
grouped_e[partition[j]] += energy[j];
grouped_c[partition[j]] += energy[j]*c[j];
}
/*****************************************************************************
* convolve the grouped energy-weighted unpredictability measure *
* and the grouped energy with the spreading function, s[j][k] *
*****************************************************************************/
for(j=0;j<CBANDS;j++)
{
#ifndef MFCMISC
ecb[j] = 0;
cb[j] = 0;
#endif
for(k=0;k<CBANDS;k++)
{
if(s[j][k] != 0.0)
{
ecb[j] += s[j][k]*grouped_e[k];
cb[j] += s[j][k]*grouped_c[k];
}
}
if(ecb[j] !=0)
cb[j] = cb[j]/ecb[j];
else
cb[j] = 0;
}
/*****************************************************************************
* Calculate the required SNR for each of the frequency partitions *
* this whole section can be accomplished by a table lookup *
*****************************************************************************/
for(j=0;j<CBANDS;j++)
{
if(cb[j]<.05)
cb[j]=0.05;
else
if(cb[j]>.5)
cb[j]=0.5;
tb = -0.434294482*log((double) cb[j])-0.301029996;
cb[j]=tb;
bc[j] = tmn[j]*tb + nmt*(1.0-tb);
k = cbval[j] + 0.5;
bc[j] = (bc[j] > bmax[k]) ? bc[j] : bmax[k];
bc[j] = exp((double) -bc[j]*LN_TO_LOG10);
}
/*****************************************************************************
* Calculate the permissible noise energy level in each of the frequency *
* partitions. Include absolute threshold and pre-echo controls *
* this whole section can be accomplished by a table lookup *
*****************************************************************************/
for(j=0;j<CBANDS;j++)
if(rnorm[j] && numlines[j])
nb[j] = ecb[j]*bc[j]/(rnorm[j]*numlines[j]);
else nb[j] = 0;
for(j=0;j<HBLKSIZE;j++)
{
/*temp1 is the preliminary threshold */
temp1=nb[partition[j]];
temp1=(temp1>absthr[j])?temp1:absthr[j];
#ifdef LAYERI
/*do not use pre-echo control for layer 2 because it may do bad things to the*/
/* MUSICAM bit allocation algorithm */
if(lay==1)
{
fthr[j] = (temp1 < lthr[chn][j]) ? temp1 : lthr[chn][j];
temp2 = temp1 * 0.00316;
fthr[j] = (temp2 > fthr[j]) ? temp2 : fthr[j];
}
else fthr[j] = temp1;
lthr[chn][j] = LXMIN*temp1;
#else
fthr[j] = temp1;
lthr[chn][j] = LXMIN*temp1;
#endif
}
/*****************************************************************************
* Translate the 512 threshold values to the 32 filter bands of the coder *
*****************************************************************************/
for(j=0;j<193;j += 16)
{
minthres = 60802371420160.0;
sum_energy = 0.0;
for(k=0;k<17;k++)
{
if(minthres>fthr[j+k])
minthres = fthr[j+k];
sum_energy += energy[j+k];
}
snrtmp[i][j/16] = sum_energy/(minthres * 17.0);
snrtmp[i][j/16] = 4.342944819 * log((double)snrtmp[i][j/16]);
}
for(j=208;j<(HBLKSIZE-1);j += 16)
{
minthres = 0.0;
sum_energy = 0.0;
for(k=0;k<17;k++)
{
minthres += fthr[j+k];
sum_energy += energy[j+k];
}
snrtmp[i][j/16] = sum_energy/minthres;
snrtmp[i][j/16] = 4.342944819 * log((double)snrtmp[i][j/16]);
}
/*****************************************************************************
* End of Psychoacuostic calculation loop *
*****************************************************************************/
}
for(i=0; i<32; i++)
{
snr32[i]=(snrtmp[0][i]>snrtmp[1][i])?snrtmp[0][i]:snrtmp[1][i];
}
}
/********************************
* init psycho model 2
********************************/
void psycho_ii_init(double sfreq)
{
int i,j;
FLOAT freq_mult;
double temp1,temp2, temp3;
FLOAT bval_lo;
grouped_c = (FLOAT *) mem_alloc(sizeof(FCB), "grouped_c");
grouped_e = (FLOAT *) mem_alloc(sizeof(FCB), "grouped_e");
nb = (FLOAT *) mem_alloc(sizeof(FCB), "nb");
cb = (FLOAT *) mem_alloc(sizeof(FCB), "cb");
ecb = (FLOAT *) mem_alloc(sizeof(FCB), "ecb");
bc = (FLOAT *) mem_alloc(sizeof(FCB), "bc");
wsamp_r = (FLOAT *) mem_alloc(sizeof(FBLK), "wsamp_r");
wsamp_i = (FLOAT *) mem_alloc(sizeof(FBLK), "wsamp_i");
phi = (FLOAT *) mem_alloc(sizeof(FBLK), "phi");
energy = (FLOAT *) mem_alloc(sizeof(FBLK), "energy");
c = (FLOAT *) mem_alloc(sizeof(FHBLK), "c");
fthr = (FLOAT *) mem_alloc(sizeof(FHBLK), "fthr");
snrtmp = (F32 *) mem_alloc(sizeof(F2_32), "snrtmp");
numlines = (int *) mem_alloc(sizeof(ICB), "numlines");
partition = (int *) mem_alloc(sizeof(IHBLK), "partition");
cbval = (FLOAT *) mem_alloc(sizeof(FCB), "cbval");
rnorm = (FLOAT *) mem_alloc(sizeof(FCB), "rnorm");
window = (FLOAT *) mem_alloc(sizeof(FBLK), "window");
absthr = (FLOAT *) mem_alloc(sizeof(FHBLK), "absthr");
tmn = (double *) mem_alloc(sizeof(DCB), "tmn");
s = (FCB *) mem_alloc(sizeof(FCBCB), "s");
lthr = (FHBLK *) mem_alloc(sizeof(F2HBLK), "lthr");
r = (F2HBLK *) mem_alloc(sizeof(F22HBLK), "r");
phi_sav = (F2HBLK *) mem_alloc(sizeof(F22HBLK), "phi_sav");
i = sfreq + 0.5;
switch(i)
{
case 32000:
sfreq_idx = 0;
break;
case 44100:
sfreq_idx = 1;
break;
case 48000:
sfreq_idx = 2;
break;
default:
fprintf(stderr, "error, invalid sampling frequency: %d Hz\n",i);
exit(-1);
}
fprintf(stderr, "absthr[][] sampling frequency index: %d\n",sfreq_idx);
read_absthr(absthr, sfreq_idx);
flush = 384*3.0/2.0;
syncsize = 1056;
sync_flush = syncsize - flush;
/* calculate HANN window coefficients */
/* for(i=0;i<BLKSIZE;i++)window[i]=0.5*(1-cos(2.0*PI*i/(BLKSIZE-1.0))); */
for(i=0;i<BLKSIZE;i++)window[i]=0.5*(1-cos(2.0*PI*(i-0.5)/BLKSIZE));
/* reset states used in unpredictability measure */
for(i=0;i<HBLKSIZE;i++)
{
r[0][0][i]=r[1][0][i]=r[0][1][i]=r[1][1][i]=0;
phi_sav[0][0][i]=phi_sav[1][0][i]=0;
phi_sav[0][1][i]=phi_sav[1][1][i]=0;
lthr[0][i] = 60802371420160.0;
lthr[1][i] = 60802371420160.0;
}
/*****************************************************************************
* Initialization: Compute the following constants for use later *
* partition[HBLKSIZE] = the partition number associated with each *
* frequency line *
* cbval[CBANDS] = the center (average) bark value of each *
* partition *
* numlines[CBANDS] = the number of frequency lines in each partition *
* tmn[CBANDS] = tone masking noise *
*****************************************************************************/
/* compute fft frequency multiplicand */
freq_mult = sfreq/BLKSIZE;
/* calculate fft frequency, then bval of each line (use fthr[] as tmp storage)*/
for(i=0;i<HBLKSIZE;i++)
{
temp1 = i*freq_mult;
j = 1;
while(temp1>crit_band[j])j++;
fthr[i]=j-1+(temp1-crit_band[j-1])/(crit_band[j]-crit_band[j-1]);
}
partition[0] = 0;
/* temp2 is the counter of the number of frequency lines in each partition */
temp2 = 1;
cbval[0]=fthr[0];
bval_lo=fthr[0];
for(i=1;i<HBLKSIZE;i++)
{
if((fthr[i]-bval_lo)>0.33)
{
partition[i]=partition[i-1]+1;
cbval[partition[i-1]] = cbval[partition[i-1]]/temp2;
cbval[partition[i]] = fthr[i];
bval_lo = fthr[i];
numlines[partition[i-1]] = temp2;
temp2 = 1;
}
else
{
partition[i]=partition[i-1];
cbval[partition[i]] += fthr[i];
temp2++;
}
}
numlines[partition[i-1]] = temp2;
cbval[partition[i-1]] = cbval[partition[i-1]]/temp2;
/************************************************************************
* Now compute the spreading function, s[j][i], the value of the spread-*
* ing function, centered at band j, for band i, store for later use *
************************************************************************/
for(j=0;j<CBANDS;j++)
{
for(i=0;i<CBANDS;i++)
{
temp1 = (cbval[i] - cbval[j])*1.05;
if(temp1>=0.5 && temp1<=2.5)
{
temp2 = temp1 - 0.5;
temp2 = 8.0 * (temp2*temp2 - 2.0 * temp2);
}
else temp2 = 0;
temp1 += 0.474;
temp3 = 15.811389+7.5*temp1-17.5*sqrt((double) (1.0+temp1*temp1));
if(temp3 <= -100) s[i][j] = 0;
else
{
temp3 = (temp2 + temp3)*LN_TO_LOG10;
s[i][j] = exp(temp3);
}
}
}
/* Calculate Tone Masking Noise values */
for(j=0;j<CBANDS;j++)
{
temp1 = 15.5 + cbval[j];
tmn[j] = (temp1>24.5) ? temp1 : 24.5;
/* Calculate normalization factors for the net spreading functions */
rnorm[j] = 0;
for(i=0;i<CBANDS;i++)
{
rnorm[j] += s[j][i];
}
}
}
void read_absthr(absthr, table)
FLOAT *absthr;
int table;
{
int j;
#include "absthr.h"
if ((table <0) || (table >3)) {
printf("internal error: wrong table number");
return;
}
for(j=0; j<HBLKSIZE; j++) {
absthr[j] = absthr_table[table][j];
}
return;
}
|