1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
#include "common.h"
#include "encoder.h"
#include "enwindow.h"
void create_dct_matrix (double filter[16][32]);
/************************************************************************
*
* window_subband()
*
* PURPOSE: Overlapping window on PCM samples
*
* SEMANTICS:
* 32 16-bit pcm samples are scaled to fractional 2's complement and
* concatenated to the end of the window buffer #x#. The updated window
* buffer #x# is then windowed by the analysis window #c# to produce the
* windowed sample #z#
*
************************************************************************/
void
window_subband (short **buffer, double z[64], int k)
{
typedef double XX[2][HAN_SIZE];
static XX *x;
double *xk;
int i;
static int off[2] = { 0, 0 };
static char init = 0;
double t;
double *ep0, *ep1, *ep2, *ep3, *ep4, *ep5, *ep6, *ep7;
if (!init)
{
x = (XX *) mem_alloc (sizeof (XX), "x");
memset (x, 0, 2 * HAN_SIZE * sizeof (double));
init = 1;
}
xk = (*x)[k];
/* replace 32 oldest samples with 32 new samples */
for (i = 0; i < 32; i++)
xk[31 - i + off[k]] = (double) *(*buffer)++ / SCALE;
ep0 = &enwindow[0];
ep1 = &enwindow[64];
ep2 = &enwindow[128];
ep3 = &enwindow[192];
ep4 = &enwindow[256];
ep5 = &enwindow[320];
ep6 = &enwindow[384];
ep7 = &enwindow[448];
/* shift samples into proper window positions */
for (i = 0; i < 64; i++)
{
t = xk[(i + off[k]) & (512 - 1)] * *ep0++;
t += xk[(i + 64 + off[k]) & (512 - 1)] * *ep1++;
t += xk[(i + 128 + off[k]) & (512 - 1)] * *ep2++;
t += xk[(i + 192 + off[k]) & (512 - 1)] * *ep3++;
t += xk[(i + 256 + off[k]) & (512 - 1)] * *ep4++;
t += xk[(i + 320 + off[k]) & (512 - 1)] * *ep5++;
t += xk[(i + 384 + off[k]) & (512 - 1)] * *ep6++;
t += xk[(i + 448 + off[k]) & (512 - 1)] * *ep7++;
z[i] = t;
}
off[k] += 480; /*offset is modulo (HAN_SIZE-1) */
off[k] &= HAN_SIZE - 1;
}
/************************************************************************
*
* filter_subband()
*
* PURPOSE: Calculates the analysis filter bank coefficients
*
* SEMANTICS:
* The windowed samples #z# is filtered by the digital filter matrix #m#
* to produce the subband samples #s#. This done by first selectively
* picking out values from the windowed samples, and then multiplying
* them by the filter matrix, producing 32 subband samples.
*
************************************************************************/
void
create_dct_matrix (double filter[16][32])
{
register int i, k;
for (i = 0; i < 16; i++)
for (k = 0; k < 32; k++)
{
if ((filter[i][k] =
1e9 * cos ((double) ((2 * i + 1) * k * PI64))) >= 0)
modf (filter[i][k] + 0.5, &filter[i][k]);
else
modf (filter[i][k] - 0.5, &filter[i][k]);
filter[i][k] *= 1e-9;
}
}
void
filter_subband (z, s)
double FAR z[HAN_SIZE], s[SBLIMIT];
{
double yprime[32];
register int i, j;
static double m[16][32];
static int init = 0;
if (init == 0)
{
init++;
create_dct_matrix (m);
}
yprime[0] = z[16];
for (i = 1; i <= 16; i++)
yprime[i] = z[i + 16] + z[16 - i];
for (i = 17; i <= 31; i++)
yprime[i] = z[i + 16] - z[80 - i];
for (i = 15; i >= 0; i--)
{
register double s0 = 0.0, s1 = 0.0;
register double *mp = m[i];
register double *xinp = yprime;
for (j = 0; j < 8; j++)
{
s0 += *mp++ * *xinp++;
s1 += *mp++ * *xinp++;
s0 += *mp++ * *xinp++;
s1 += *mp++ * *xinp++;
}
s[i] = s0 + s1;
s[31 - i] = s0 - s1;
}
}
#ifdef NEWWS
/***********************************************************************
An implementation of a modified window subband as seen in Kumar & Zubair's
"A high performance software implentation of mpeg audio encoder"
I think from IEEE ASCAP 1996 proceedings
input: shift in 32*12 (384) new samples into a 864 point buffer.
ch - which channel we're looking at.
This routine basically does 12 calls to window subband all in one go.
Not yet called in code. here for testing only.
************************************************************************/
void
window_subband12 (short **buffer, int ch)
{
static double x[2][864]; /* 2 channels, 864 buffer for each */
double *xk;
double t[12]; /* a temp buffer for summing values */
double y[12][64]; /* 12 output arrays of 64 values */
int i, j, k, m;
static double c[512]; /* enwindow array */
static int init = 0;
double c0;
xk = x[ch]; /* an easier way of referencing the array */
/* shift 384 new samples into the buffer */
for (i = 863; i >= 384; i--)
xk[i] = xk[i - 384];
for (i = 383; i >= 0; i--)
xk[i] = (double) *(*buffer)++ / SCALE;
for (j = 0; j < 64; j++)
{
for (k = 0; k < 12; k++)
t[k] = 0;
for (i = 0; i < 8; i++)
{
m = i * 64 + j;
c0 = c[m];
t[0] += c0 * xk[m + 352];
t[1] += c0 * xk[m + 320];
t[2] += c0 * xk[m + 288];
t[3] += c0 * xk[m + 256];
t[4] += c0 * xk[m + 224];
t[5] += c0 * xk[m + 192];
t[6] += c0 * xk[m + 160];
t[7] += c0 * xk[m + 128];
t[8] += c0 * xk[m + 96];
t[9] += c0 * xk[m + 64];
t[10] += c0 * xk[m + 32];
t[11] += c0 * xk[m];
}
for (i = 0; i < 12; i++)
{
y[i][j] = t[i];
}
}
}
#endif /* NEWWS */
|