1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
|
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "common.h"
#include "options.h"
#include "encoder.h"
#include "mem.h"
#include "fft.h"
#include "ath.h"
#include "psycho_4.h"
/****************************************************************
PSYCHO_4 by MFC Feb 2003
This is a cleaned up implementation of psy model 2.
This is basically because I was sick of the inconsistencies between
the notation in the ISO docs and in the sourcecode.
I've nicked a bunch of stuff from LAME to make this a bit easier to grok
- ATH values (this also overcomes the lack of mpeg-2 tables
which meant that LSF never had proper values)
- freq2bark() to convert frequencies directly to bark values.
- spreading_function() isolated the calculation of the spreading function.
Basically the same code as before, just isolated in its own function.
LAME seem to does some extra tweaks to the ISO1117s model.
Not really sure if they help or hinder, so I've commented them out (#ifdef LAME)
NB: Because of some of the tweaks to bark value calculation etc, it is now possible
to have 64 CBANDS. There's no real limit on the actual number of paritions.
I wonder if it's worth experimenting with really higher numbers? Probably won't make
that much difference to the final SNR values, but it's something worth trying
Maybe CBANDS should be a dynamic value, calculated by the psycho_init function
CBANDS definition has been changed in encoder.h from 63 to 64
****************************************************************/
/* The static variables "r", "phi_sav", "new", "old" and "oldest" have
to be remembered for the unpredictability measure. For "r" and
"phi_sav", the first index from the left is the channel select and
the second index is the "age" of the data. */
static int new = 0, old = 1, oldest = 0;
static int init = 0;
/* NMT is a constant 5.5dB. ISO11172 Sec D.2.4.h */
static double NMT = 5.5;
/* The index into this array is a bark value
This array gives the 'minval' values from ISO11172 Tables D.3.x */
static FLOAT minval[27] = {
0.0, /* bark = 0 */
20.0, /* 1 */
20.0, /* 2 */
20.0, /* 3 */
20.0, /* 4 */
20.0, /* 5 */
17.0, /* 6 */
15.0, /* 7 */
10.0, /* 8 */
7.0, /* 9 */
4.4, /* 10 */
4.5, 4.5, 4.5,4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, /* 11 - 25 */
3.5 /* 26 */
};
static FLOAT *grouped_c, *grouped_e, *nb, *cb, *tb, *ecb, *bc;
static FLOAT *wsamp_r, *phi, *energy;
static FLOAT *c, *bark, *thr;
static F32 *snrtmp;
static int *numlines;
static int *partition;
static FLOAT *cbval, *rnorm;
static FLOAT *window;
static FLOAT *ath;
static double *tmn;
static FCB *s;
static FHBLK *lthr;
static F2HBLK *r, *phi_sav;
#define TRIGTABLESIZE 3142
#define TRIGTABLESCALE 1000.0
static FLOAT cos_table[TRIGTABLESIZE];
static FLOAT sin_table[TRIGTABLESIZE];
void psycho_4_trigtable_init(void) {
int i;
for (i=0;i<TRIGTABLESIZE;i++) {
cos_table[i] = cos((double)i/TRIGTABLESCALE);
sin_table[i] = sin((double)i/TRIGTABLESCALE);
}
}
INLINE FLOAT psycho_4_cos(FLOAT phi) {
int index;
int sign=1;
index = (int)(fabs(phi) * TRIGTABLESCALE);
while (index>=TRIGTABLESIZE) {
index -= TRIGTABLESIZE;
sign*=-1;
}
return(sign * cos_table[index]);
}
INLINE FLOAT psycho_4_sin(FLOAT phi) {
int index;
int sign=1;
index = (int)(fabs(phi) * TRIGTABLESCALE);
while (index>=TRIGTABLESIZE) {
index -= TRIGTABLESIZE;
sign*=-1;
}
if (phi<0)
return(-1 * sign * sin_table[index]);
return(sign * sin_table[index]);
}
void psycho_4 (short int *buffer, short int savebuf[1056], int chn,
double *smr, double sfreq, options *glopts)
/* to match prototype : FLOAT args are always double */
{
unsigned int run, i, j, k;
FLOAT r_prime, phi_prime;
FLOAT npart, epart;
if (init == 0) {
psycho_4_init (sfreq, glopts);
init++;
}
for (run = 0; run < 2; run++) {
/* Net offset is 480 samples (1056-576) for layer 2; this is because one must
stagger input data by 256 samples to synchronize psychoacoustic model with
filter bank outputs, then stagger so that center of 1024 FFT window lines
up with center of 576 "new" audio samples.
flush = 384*3.0/2.0; = 576
syncsize = 1056;
sync_flush = syncsize - flush; 480
BLKSIZE = 1024 */
for (j = 0; j < 480; j++) {
savebuf[j] = savebuf[j + 576];
wsamp_r[j] = window[j] * ((FLOAT) savebuf[j]);
}
for (; j < 1024; j++) {
savebuf[j] = *buffer++;
wsamp_r[j] = window[j] * ((FLOAT) savebuf[j]);
}
for (; j < 1056; j++)
savebuf[j] = *buffer++;
/* Compute FFT */
psycho_2_fft (wsamp_r, energy, phi);
/* calculate the unpredictability measure, given energy[f] and phi[f]
(the age pointers [new/old/oldest] are reset automatically on the second pass */
{
if (new == 0) {
new = 1;
oldest = 1;
} else {
new = 0;
oldest = 0;
}
if (old == 0)
old = 1;
else
old = 0;
}
for (j = 0; j < HBLKSIZE; j++) {
#ifdef NEWATAN
double temp1, temp2, temp3;
r_prime = 2.0 * r[chn][old][j] - r[chn][oldest][j];
phi_prime = 2.0 * phi_sav[chn][old][j] - phi_sav[chn][oldest][j];
r[chn][new][j] = sqrt ((double) energy[j]);
phi_sav[chn][new][j] = phi[j];
{
temp1 =
r[chn][new][j] * psycho_4_cos(phi[j]) -
r_prime * psycho_4_cos(phi_prime);
temp2 =
r[chn][new][j] * psycho_4_sin(phi[j]) -
r_prime * psycho_4_sin(phi_prime);
//fprintf(stdout,"[%5.2f %5.2f] [%5.2f %5.2f]\n",temp1, mytemp1, temp2, mytemp2);
}
temp3 = r[chn][new][j] + fabs ((double) r_prime);
if (temp3 != 0)
c[j] = sqrt (temp1 * temp1 + temp2 * temp2) / temp3;
else
c[j] = 0;
#else
double temp1, temp2, temp3;
r_prime = 2.0 * r[chn][old][j] - r[chn][oldest][j];
phi_prime = 2.0 * phi_sav[chn][old][j] - phi_sav[chn][oldest][j];
r[chn][new][j] = sqrt ((double) energy[j]);
phi_sav[chn][new][j] = phi[j];
temp1 =
r[chn][new][j] * cos ((double) phi[j]) -
r_prime * cos ((double) phi_prime);
temp2 =
r[chn][new][j] * sin ((double) phi[j]) -
r_prime * sin ((double) phi_prime);
temp3 = r[chn][new][j] + fabs ((double) r_prime);
if (temp3 != 0)
c[j] = sqrt (temp1 * temp1 + temp2 * temp2) / temp3;
else
c[j] = 0;
#endif
}
/* For each partition, sum all the energy in that partition - grouped_e
and calculated the energy-weighted unpredictability measure - grouped_c
ISO 11172 Section D.2.4.e */
for (j = 1; j < CBANDS; j++) {
grouped_e[j] = 0;
grouped_c[j] = 0;
}
grouped_e[0] = energy[0];
grouped_c[0] = energy[0] * c[0];
for (j = 1; j < HBLKSIZE; j++) {
grouped_e[partition[j]] += energy[j];
grouped_c[partition[j]] += energy[j] * c[j];
}
/* convolve the grouped energy-weighted unpredictability measure
and the grouped energy with the spreading function
ISO 11172 D.2.4.f */
for (j = 0; j < CBANDS; j++) {
ecb[j] = 0;
cb[j] = 0;
for (k = 0; k < CBANDS; k++) {
if (s[j][k] != 0.0) {
ecb[j] += s[j][k] * grouped_e[k];
cb[j] += s[j][k] * grouped_c[k];
}
}
if (ecb[j] != 0)
cb[j] = cb[j] / ecb[j];
else
cb[j] = 0;
}
/* Convert cb to tb (the tonality index)
ISO11172 SecD.2.4.g */
for (i=0;i<CBANDS;i++) {
if (cb[i] < 0.05)
cb[i] = 0.05;
else if (cb[i] > 0.5)
cb[i] = 0.5;
tb[i] = -0.301029996 - 0.434294482 * log((double) cb[i]);
}
/* Calculate the required SNR for each of the frequency partitions
ISO 11172 Sect D.2.4.h */
for (j = 0; j < CBANDS; j++) {
FLOAT SNR, SNRtemp;
SNRtemp = tmn[j] * tb[j] + NMT * (1.0 - tb[j]);
SNR = MAX(SNRtemp, minval[(int)cbval[j]]);
bc[j] = exp ((double) -SNR * LN_TO_LOG10);
}
/* Calculate the permissible noise energy level in each of the frequency
partitions.
This section used to have pre-echo control but only for LayerI
ISO 11172 Sec D.2.4.k - Spread the threshold energy over FFT lines */
for (j = 0; j < CBANDS; j++) {
if (rnorm[j] && numlines[j])
nb[j] = ecb[j] * bc[j] / (rnorm[j] * numlines[j]);
else
nb[j] = 0;
}
/* ISO11172 Sec D.2.4.l - thr[] the final energy threshold of audibility */
for (j = 0; j < HBLKSIZE; j++)
thr[j] = MAX(nb[partition[j]], ath[j]);
/* Translate the 512 threshold values to the 32 filter bands of the coder
Using ISO 11172 Table D.5 and Section D.2.4.n */
for (j = 0; j < 193; j += 16) {
/* WIDTH = 0 */
npart = 60802371420160.0;
epart = 0.0;
for (k = 0; k < 17; k++) {
if (thr[j + k] < npart)
npart = thr[j + k]; /* For WIDTH==0, find the minimum noise, and
later multiply by the number of indexes i.e. 17 */
epart += energy[j + k];
}
snrtmp[run][j / 16] = 4.342944819 * log((double)(epart/(npart*17.0)));
}
for (j = 208; j < (HBLKSIZE - 1); j += 16) {
/* WIDTH = 1 */
npart = 0.0;
epart = 0.0;
for (k = 0; k < 17; k++) {
npart += thr[j + k]; /* For WIDTH==1, sum the noise */
epart += energy[j + k];
}
snrtmp[run][j / 16] = 4.342944819 * log ((double) (epart/npart));
}
}
/* Pick the maximum value of the two runs ISO 11172 Sect D.2.1 */
for (i = 0; i < 32; i++)
smr[i] = MAX(snrtmp[0][i], snrtmp[1][i]);
}
/********************************
* init psycho model 2
********************************/
void psycho_4_init (double sfreq, options *glopts)
{
int i, j;
/* Allocate memory for all the static variables */
psycho_4_allocmem();
/* Set up the SIN/COS tables */
psycho_4_trigtable_init();
/* calculate HANN window coefficients */
for (i = 0; i < BLKSIZE; i++)
window[i] = 0.5 * (1 - cos (2.0 * PI * (i - 0.5) / BLKSIZE));
/* For each FFT line from 0(DC) to 512(Nyquist) calculate
- bark : the bark value of this fft line
- ath : the absolute threshold of hearing for this line [ATH]
Since it is a 1024 point FFT, each line in the fft corresponds
to 1/1024 of the total frequency.
Line 0 should correspond to DC - which doesn't really have a ATH afaik
Line 1 should be 1/1024th of the Sampling Freq
Line 512 should be the nyquist freq */
for (i=0; i<HBLKSIZE; i++) {
FLOAT freq = i * sfreq/BLKSIZE;
bark[i] = freq2bark(freq);
/* The ath tables in the dist10 code seem to be a little out of kilter.
they seem to start with index 0 corresponding to (sampling freq)/1024.
When in doubt, i'm going to assume that the dist10 code is wrong. MFC Feb2003 */
ath[i] = ATH_energy(freq,glopts->athlevel);
//fprintf(stdout,"%.2f ",ath[i]);
}
/* Work out the partitions
Starting from line 0, all lines within 0.33 of the starting
bark are added to the same partition. When a line is greater
by 0.33 of a bark, start a new partition. */
int partition_count = 0; /* keep a count of the partitions */
int cbase = 0; /* current base index for the bark range calculation */
for (i=0;i<HBLKSIZE;i++) {
if ((bark[i] - bark[cbase]) > 0.33) { /* 1/3 critical band? */
/* this frequency line is too different from the starting line,
(in terms of the bark distance)
so close that previous partition, and make this line the first
member of the next partition */
cbase = i; /* Start the new partition from this frequency */
partition_count++;
}
/* partition[i] tells us which partition the i'th frequency line is in */
partition[i] = partition_count;
/* keep a count of how many frequency lines are in each partition */
numlines[partition_count]++;
}
/* For each partition within the frequency space,
calculate the average bark value - cbval [central bark value] */
for (i=0;i<HBLKSIZE;i++)
cbval[partition[i]] += bark[i]; /* sum up all the bark values */
for (i=0;i<CBANDS;i++) {
if (numlines[i] != 0)
cbval[i] /= numlines[i]; /* divide by the number of values */
else {
cbval[i]=0; /* this isn't a partition */
}
}
/* Calculate the spreading function. ISO 11172 Section D.2.3 */
for (i=0;i<CBANDS;i++) {
for (j=0;j<CBANDS;j++) {
s[i][j] = psycho_4_spreading_function( 1.05 * (cbval[i] - cbval[j]) );
rnorm[i] += s[i][j]; /* sum the spreading function values for each partition so that
they can be normalised later on */
}
}
/* Calculate Tone Masking Noise values. ISO 11172 Tables D.3.x */
for (j = 0; j < CBANDS; j++)
tmn[j] = MAX(15.5+cbval[j], 24.5);
if (glopts->verbosity > 10) {
/* Dump All the Values to STDOUT */
int wlow, whigh=0;
int ntot=0;
fprintf(stdout,"psy model 4 init\n");
fprintf(stdout,"index \tnlines \twlow \twhigh \tbval \tminval \ttmn\n");
for (i=0;i<CBANDS;i++)
if (numlines[i] != 0) {
wlow = whigh+1;
whigh = wlow + numlines[i] - 1;
fprintf(stdout,"%i \t%i \t%i \t%i \t%5.2f \t%4.2f \t%4.2f\n",i+1, numlines[i],wlow, whigh, cbval[i],minval[(int)cbval[i]],tmn[i]);
ntot += numlines[i];
}
fprintf(stdout,"total lines %i\n",ntot);
exit(0);
}
}
/* The spreading function. Values returned in units of energy
Argument 'bark' is the difference in bark values between the
centre of two partitions.
This has been taken from LAME. MFC Feb 2003 */
FLOAT8 psycho_4_spreading_function(FLOAT8 bark) {
FLOAT8 tempx,x,tempy,temp;
tempx = bark;
#ifdef LAME
/* MP3 standard actually spreads these values a little more */
if (tempx>=0) tempx *= 3;
else tempx *=1.5;
#endif
if(tempx>=0.5 && tempx<=2.5)
{
temp = tempx - 0.5;
x = 8.0 * (temp*temp - 2.0 * temp);
}
else x = 0.0;
tempx += 0.474;
tempy = 15.811389 + 7.5*tempx - 17.5*sqrt(1.0+tempx*tempx);
if (tempy <= -60.0) return 0.0;
tempx = exp( (x + tempy)*LN_TO_LOG10 );
#ifdef LAME
/* I'm not sure where the magic value of 0.6609193 comes from.
toolame will just keep using the rnorm to normalise the spreading function
MFC Feb 2003 */
/* Normalization. The spreading function should be normalized so that:
+inf
/
| s3 [ bark ] d(bark) = 1
/
-inf
*/
tempx /= .6609193;
#endif
return tempx;
}
void psycho_4_allocmem() {
grouped_c = (FLOAT *) mem_alloc (sizeof (FCB), "grouped_c");
grouped_e = (FLOAT *) mem_alloc (sizeof (FCB), "grouped_e");
nb = (FLOAT *) mem_alloc (sizeof (FCB), "nb");
cb = (FLOAT *) mem_alloc (sizeof (FCB), "cb");
tb = (FLOAT *) mem_alloc (sizeof (FCB), "tb");
ecb = (FLOAT *) mem_alloc (sizeof (FCB), "ecb");
bc = (FLOAT *) mem_alloc (sizeof (FCB), "bc");
wsamp_r = (FLOAT *) mem_alloc (sizeof (FBLK), "wsamp_r");
phi = (FLOAT *) mem_alloc (sizeof (FBLK), "phi");
energy = (FLOAT *) mem_alloc (sizeof (FBLK), "energy");
c = (FLOAT *) mem_alloc (sizeof (FHBLK), "c");
bark = (FLOAT *) mem_alloc (sizeof (FHBLK), "bark");
thr = (FLOAT *) mem_alloc (sizeof (FHBLK), "thr");
snrtmp = (F32 *) mem_alloc (sizeof (F2_32), "snrtmp");
numlines = (int *) mem_alloc (sizeof (ICB), "numlines");
partition = (int *) mem_alloc (sizeof (IHBLK), "partition");
cbval = (FLOAT *) mem_alloc (sizeof (FCB), "cbval");
rnorm = (FLOAT *) mem_alloc (sizeof (FCB), "rnorm");
window = (FLOAT *) mem_alloc (sizeof (FBLK), "window");
ath = (FLOAT *) mem_alloc (sizeof (FHBLK), "ath");
tmn = (double *) mem_alloc (sizeof (DCB), "tmn");
s = (FCB *) mem_alloc (sizeof (FCBCB), "s");
lthr = (FHBLK *) mem_alloc (sizeof (F2HBLK), "lthr");
r = (F2HBLK *) mem_alloc (sizeof (F22HBLK), "r");
phi_sav = (F2HBLK *) mem_alloc (sizeof (F22HBLK), "phi_sav");
}
|