File: ComputeTriangs.cc

package info (click to toggle)
topcom 0.17.8%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,572 kB
  • sloc: cpp: 16,640; sh: 975; makefile: 345; ansic: 40
file content (411 lines) | stat: -rw-r--r-- 13,600 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
////////////////////////////////////////////////////////////////////////////////
// 
// ComputeTriangs.cc
//
//    produced: 25 Nov 1999 jr
// last change: 25 nov 1999 jr
// 
////////////////////////////////////////////////////////////////////////////////

#include "HashMap.hh"
#include "HashSet.hh"
#include "SimplicialComplex.hh"

#include "CommandlineOptions.hh"

#include "Permutation.hh"
#include "PointConfiguration.hh"
#include "Chirotope.hh"
#include "Circuits.hh"
#include "Facets.hh"
#include "Admissibles.hh"
#include "InteriorFacets.hh"
#include "PartialTriang.hh"
#include "CheckTriang.hh"
#include "Flip.hh"
#include "MarkedFlips.hh"
#include "TriangNode.hh"
#include "TriangFlips.hh"
#include "Symmetry.hh"
#include "FineTriang.hh"
#include "SymmetricBFS.hh"

#include "ComputeTriangs.hh"

void __dfs(const size_type no,
	   const size_type rank,
	   PartialTriang&  current_partial_triang,
	   size_type*      partial_count_ptr,
	   size_type*      count_ptr,
	   const bool      output_triangs) {
  SimplicialComplex forbidden;
  for (SimplicialComplex::const_iterator sciter 
	 = current_partial_triang.admissibles().begin();
       sciter != current_partial_triang.admissibles().end(); 
       ++sciter) {
    const Simplex new_simp(*sciter);
    forbidden += new_simp;
    PartialTriang next_partial_triang(PartialTriang(current_partial_triang, new_simp, forbidden));
    // new partial triang:
    ++(*partial_count_ptr);
    if (next_partial_triang.freefacets().is_empty()) {
      // complete triang:
      // output the triangulation:
      if (output_triangs) {
	std::cout << next_partial_triang << std::endl;
      }
      ++(*count_ptr);
      if (CommandlineOptions::verbose()) {
	if (*count_ptr % 10 == 0) {
	  std::cerr << *count_ptr << " triangulations so far." << std::endl;
	}
      }
    }
    else if (next_partial_triang.admissibles().is_empty()) {
      // dead end:
    }
    else {
      // partial triang:
      __dfs(no, rank, next_partial_triang, partial_count_ptr, count_ptr, output_triangs);
    }
  }
}

const size_type __no_of_all_triangs(const size_type       no,
				    const size_type       rank, 
				    const Admissibles&    admtable, 
				    const InteriorFacets& intfacets,
				    const bool            output_triangs) {
  PartialTriang root(no, rank, admtable, intfacets);
  if (CommandlineOptions::debug()) {
    std::cerr << "Root triangulation: " << root << std::endl;
    std::cerr << "Admissibles Table:  " << admtable << std::endl;
    std::cerr << "InteriorFacets:     " << intfacets << std::endl;
  }
  size_type count(0);
  size_type partial_count(0);
  size_type no_of_simplices(root.admissibles().card());
  size_type count_start_simplices(0);
  SimplicialComplex forbidden;
  for (SimplicialComplex::const_iterator sciter = root.admissibles().begin();
       sciter != root.admissibles().end();
       ++sciter) {
    const Simplex start_simp(*sciter);
    forbidden += start_simp;
    PartialTriang next_partial_triang(root, start_simp, forbidden);
    if (next_partial_triang.freefacets().is_empty()) {
      // complete triang:
      // output the triangulation:
      if (output_triangs) {
	std::cout << next_partial_triang << std::endl;
      }
      ++count;
      if (CommandlineOptions::verbose() && (count % 10 == 0)) {
	std::cerr << count << " triangulations so far." << std::endl;
      }
    }
    __dfs(no, rank, next_partial_triang, &partial_count, &count, output_triangs);
    if (CommandlineOptions::verbose()) {
      std::cerr << "done " << ++count_start_simplices 
	   << " start simplices out of " << no_of_simplices 
	   << '.' << std::endl;
    }
  }
  if (CommandlineOptions::verbose()) {
    std::cerr << partial_count << " partial triangulations visited in total." << std::endl;
  }
  return count;
}

const size_type __no_of_triangs(const parameter_type      no,
				const parameter_type      rank,
				const PointConfiguration& points,
 				const Chirotope&          chiro,
				const SymmetryGroup&      symmetries,
				const SimplicialComplex&  seed,
				const SymmetryGroup&      seed_symmetries,
				const bool                output_triangs,
				const bool                fine_only) {
  SymmetricBFS bfs(no, rank, points, chiro, 
		   symmetries, seed, seed_symmetries, 
		   output_triangs, fine_only);
  if (CommandlineOptions::verbose()) {
    std::cerr << bfs.symcount() << " symmetry classes." << std::endl;
    std::cerr << bfs.totalcount() << " triangulations in total." << std::endl;
  }
  return bfs.symcount();
}

int ComputeTriangs::run(const int flags) {

  const bool input_chiro    = flags & INPUT_CHIRO;
  const bool compute_all    = flags & COMPUTE_ALL;
  const bool fine_only      = flags & FINE_ONLY;
  const bool output_triangs = flags & OUTPUT_TRIANGS;
  const bool preprocess     = flags & PREPROCESS;
  const bool findflips      = flags & FINDFLIPS;
  const bool unimodular     = flags & UNIMODULAR;

  if (CommandlineOptions::verbose()) {
    std::cerr << std::endl;
    std::cerr << "------------------------------------------------------------\n";
    std::cerr << "------------------ " << PACKAGE << " VERSION " << VERSION << " -------------------\n";
    std::cerr << "Triangulations of Point Configurations and Oriented Matroids\n";
    std::cerr << "--------------------- by Joerg Rambau ----------------------\n";
    std::cerr << "------------------------------------------------------------\n";
    std::cerr << std::endl;
  }
  if (input_chiro && CommandlineOptions::check_regular()) {
    std::cerr << "regularity check not possible if only chirotope is given; exiting." << std::endl;
    exit(1);
  }

  if (compute_all) {
    PointConfiguration points;
    Chirotope chiro;
    if (input_chiro) {
      if (chiro.read_string(std::cin)) {
	if (CommandlineOptions::verbose()) {
	  std::cerr << "read chirotope." << std::endl;
	}
      }
      else {
	if (CommandlineOptions::verbose()) {
	  std::cerr << "error while reading chirotope." << std::endl;
	}
	return 1;
      }
    }  
    else {
      if (!points.read(std::cin)) {
	if (CommandlineOptions::verbose()) {
	  std::cerr << "error while reading point configuration." << std::endl;
	}
	return 1;
      }
      if ((points.no() < 2) || (points.rank() < 2)) {
	if (CommandlineOptions::verbose()) {
	  std::cerr << "no of points and rank must be at least two." << std::endl;
	}
	return 1;
      }
      if (points.rank() > points.no()) {
	if (CommandlineOptions::verbose()) {
	  std::cerr << "rank must not be larger than no of points." << std::endl;
	}
	return 1;
      }
      chiro = Chirotope(points, preprocess);
      }
//     if (CommandlineOptions::verbose()) {
//       std::cerr << "computing dual chirotope ..." << std::endl;
//     }
//     Chirotope* dualptr = new Chirotope(chiro.dual());
//     if (CommandlineOptions::verbose()) {
//       std::cerr << "... done." << std::endl;
//     }
    size_type no(chiro.no());
    size_type rank(chiro.rank());
    if (CommandlineOptions::verbose()) {
      std::cerr << "computing circuits ..." << std::endl;
    }
    Circuits* circuitsptr = new Circuits(chiro);
    if (CommandlineOptions::verbose()) {
      std::cerr << "... done." << std::endl;
      std::cerr << "computing admissibles ..." << std::endl;
    }
    Admissibles admissibles(*circuitsptr, chiro, fine_only);
    if (CommandlineOptions::verbose()) {
      std::cerr << "... done." << std::endl;
    }
    delete circuitsptr;
    if (CommandlineOptions::verbose()) {
      std::cerr << "computing cocircuits ..." << std::endl;
    }
    Cocircuits* cocircuitsptr = new Cocircuits(chiro);
    if (CommandlineOptions::verbose()) {
      std::cerr << "... done." << std::endl;
    }
//     delete dualptr;
    if (CommandlineOptions::verbose()) {
      std::cerr << "computing facets ..." << std::endl;
    }
    Facets* facetsptr = new Facets(*cocircuitsptr);
    if (CommandlineOptions::verbose()) {
      std::cerr << "... done." << std::endl;
    }
    delete cocircuitsptr;
    if (CommandlineOptions::verbose()) {
      std::cerr << "computing interior facets ..." << std::endl;
    }
    InteriorFacets interiorfacets = InteriorFacets(*facetsptr);
    if (CommandlineOptions::verbose()) {
      std::cerr << "... done." << std::endl;
    }
    delete facetsptr;
    if (CommandlineOptions::verbose()) {
      std::cerr << "counting triangulations ..." << std::endl;
    }
    const size_type N = __no_of_all_triangs(no, rank, admissibles, interiorfacets, output_triangs);
    if (CommandlineOptions::verbose()) {
      std::cerr << N << " triangulations in total." << std::endl;
      std::cerr << "... done." << std::endl;
    }
    if (!output_triangs) {
      std::cout << N << std::endl;
    }
    return 0;
  }
  else {
    Chirotope chiro;
    PointConfiguration points;
    if (input_chiro) {
      // polymake input:
//       if (CommandlineOptions::polymakeobj()) {
// 	CommandlineOptions::polymakeobj().read("CHIROTOPE", 0);
// 	chiro.read_string(CommandlineOptions:polymakeobj());
//       }
//       else {
	if (!chiro.read_string(std::cin)) {
	  if (CommandlineOptions::verbose()) {
	    std::cerr << "error while reading chirotope." << std::endl;
	  }
	  return 1;
	}
//       }
    }
    else {
      if (!points.read(std::cin)) {
	if (CommandlineOptions::verbose()) {
	  std::cerr << "error while reading point configuration." << std::endl;
	}
	return 1;
      }
      if ((points.no() < 2) || (points.rank() < 2)) {
	if (CommandlineOptions::verbose()) {
	  std::cerr << "no of points and rank must be at least two." << std::endl;
	}
	return 1;
      }
      if (points.rank() > points.no()) {
	if (CommandlineOptions::verbose()) {
	  std::cerr << "rank must not be larger than no of points." << std::endl;
	}
	return 1;
      }
      chiro = Chirotope(points, preprocess);
    }
    size_type no(chiro.no());
    size_type rank(chiro.rank());
    SymmetryGroup symmetries(no);
    if (!CommandlineOptions::ignore_symmetries()) {
      if (symmetries.read(std::cin)) {
	if (CommandlineOptions::verbose()) {
#ifndef STL_SYMMETRIES
	  std::cerr << symmetries.load() << " symmetries in total." << std::endl;
#else
	  std::cerr << symmetries.size() << " symmetries in total." << std::endl;
#endif
	  if (CommandlineOptions::debug()) {
	    std::cerr << "symmetries:" << std::endl;
	    std::cerr << symmetries << std::endl;
	  }
	}
      }
    }
    else {
      if (CommandlineOptions::verbose()) {
	std::cerr << "no valid symmetry generators found." << std::endl;
      }
    }
    SimplicialComplex seed;
    if (!seed.read(std::cin)) {
      if (CommandlineOptions::verbose()) {
	std::cerr << "no valid seed triangulation found" << std::endl;
	std::cerr << "computing seed triangulation via placing and pushing ..." 
	     << std::endl;
      }
      if (fine_only) {
	seed = FineTriang(chiro);
      }
      else {
	seed = PlacingTriang(chiro);
      }
    }
    if (CommandlineOptions::verbose()) {
      std::cerr << "Computing symmetries of seed ..." << std::endl;
    }
    const SymmetryGroup seed_symmetries(symmetries, seed);
    if (CommandlineOptions::verbose()) {
      std::cerr << "... done." << std::endl;
#ifndef STL_SYMMETRIES
      std::cerr << seed_symmetries.load() << " symmetries in total in seed." << std::endl;
#else
      std::cerr << seed_symmetries.size() << " symmetries in total in seed." << std::endl;
#endif
      if (CommandlineOptions::debug()) {
	std::cerr << "symmetries:" << std::endl;
	std::cerr << symmetries << std::endl;
      }
    }
    if (CommandlineOptions::check()) {
      if (CommandlineOptions::verbose()) {
	std::cerr << "checking seed triangulation ..." << std::endl;
      }
      if (!(CheckTriang(seed, seed_symmetries, chiro, symmetries, fine_only))()) {
	if (CommandlineOptions::verbose()) {
	  std::cerr << "seed triangulation " << std::endl
	       << seed << std::endl
	       << "not valid." << std::endl;
	}
	return(1);
      }
      if (CommandlineOptions::verbose()) {
	std::cerr << "... done." << std::endl;;
      }
    }
    if (CommandlineOptions::verbose()) {
      std::cerr << "seed: " << seed << std::endl;
      std::cerr << "containing " << seed.card() << " simplices" << std::endl;
      std::cerr << "using the following " << seed.support().card() << " vertices: " 
		<< seed.support() << std::endl;
      std::cerr << "... done." << std::endl;
    }
    if (findflips) {
      if (CommandlineOptions::verbose()) {
	std::cerr << "count all flips of seed ..." << std::endl;
      }
      const TriangNode tn(0, no, rank, seed);
      const TriangFlips tf(chiro, tn, seed_symmetries, fine_only);
      if (CommandlineOptions::verbose()) {
// 	std::cerr << tf.flips().load() << " flips in total." << std::endl;
	std::cerr << tf.flips().size() << " flips in total." << std::endl;
	std::cerr << "... done." << std::endl;
      }
      if (output_triangs) {
	std::cout << tf << std::endl;
      }
      else {
// 	std::cout << tf.flips().load() << std::endl;
	std::cout << tf.flips().size() << std::endl;
      }
      return 0;
    }
    if (CommandlineOptions::verbose()) {
      std::cerr << "count all symmetry classes of triangulations ..." << std::endl;
    }
    const size_type N = __no_of_triangs(no, rank, points, chiro, 
					symmetries, seed, seed_symmetries,
					output_triangs, fine_only);
    if (CommandlineOptions::verbose()) {
      std::cerr << N << " symmetry classes of triangulations in total." << std::endl;
      std::cerr << "... done." << std::endl;
    }
    if (!output_triangs) {
      std::cout << N << std::endl;
    }
    return 0;
  }
}

// eof ComputeTriangs.cc