1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
|
////////////////////////////////////////////////////////////////////////////////
//
// SymmetricBFS.cc
//
// produced: 24/07/98 jr
// last change: 24/07/98 jr
//
////////////////////////////////////////////////////////////////////////////////
#include <sstream>
#include "SymmetricBFS.hh"
void SymmetricBFS::_mark_equivalent_flips(const TriangNode& tnode,
const tnode_container_type::iterator find_iter,
const FlipRep& fliprep) {
#ifdef CHECK_MARK
std::cerr << "flip before marking:" << std::endl;
std::cerr << find_iter->key() << "->" << find_iter->data() << std::endl;
#endif
// mark this flip:
#ifndef STL_CONTAINERS
find_iter->dataptr()->mark_flip(fliprep);
#else
find_iter->second.mark_flip(fliprep);
#endif
// mark all equivalent flips:
for (SymmetryGroup::const_iterator iter = _node_symmetries.begin();
iter != _node_symmetries.end();
++iter) {
const Symmetry& g = *iter;
#ifndef STL_CONTAINERS
find_iter->dataptr()->mark_flip(g(fliprep));
#else
find_iter->second.mark_flip(g(fliprep));
#endif
}
#ifdef CHECK_MARK
std::cerr << "flip after marking:" << std::endl;
std::cerr << find_iter->key() << "->" << find_iter->data() << std::endl;
#endif
}
void SymmetricBFS::_mark_equivalent_flips(const TriangNode& tnode,
TriangFlips& tflips,
const FlipRep& fliprep) {
#ifdef CHECK_MARK
std::cerr << "flips before marking:" << std::endl;
std::cerr << tflips << std::endl;
#endif
// mark this flip:
tflips.mark_flip(fliprep);
// mark all equivalent flips:
for (SymmetryGroup::const_iterator iter = _node_symmetries.begin();
iter != _node_symmetries.end();
++iter) {
#ifndef STL_SYMMETRIES
const Symmetry& g(iter->key());
#else
const Symmetry& g(*iter);
#endif
tflips.mark_flip(g(fliprep));
}
#ifdef CHECK_MARK
std::cerr << "flips after marking:" << std::endl;
std::cerr << tflips << std::endl;
#endif
}
const int SymmetricBFS::_old_symmetry_class(const TriangNode& tnode) {
if (CommandlineOptions::simple()) {
#ifndef STL_CONTAINERS
if (_all_triangs.member(tnode)) {
#else
if (_all_triangs.find(tnode) != _all_triangs.end()) {
#endif
_orbitsize = 0;
return -1;
}
// first check whether tnode represents an old symmetry class:
for (SymmetryGroup::const_iterator iter = _symmetries.begin();
iter != _symmetries.end();
++iter) {
#ifndef STL_SYMMETRIES
const Symmetry& g(iter->key());
#else
const Symmetry& g(*iter);
#endif
_representative = g(tnode);
triang_container_type::const_iterator t_iter = _all_triangs.find(_representative);
// #ifndef STL_CONTAINERS
// if (!_orbit.member(_representative)) {
// if (_all_triangs.member(_representative)) {
// #else
if (_orbit.find(_representative) == _orbit.end()) {
if (t_iter != _all_triangs.end()) {
// #endif
_orbit.clear();
_orbitsize = 0;
return 1;
}
}
}
// next, check for the search predicate (e.g., regularity) for tnode:
if ((*_search_pred_ptr)(*_pointsptr, *_chiroptr, tnode)) {
// tnode has search predicate:
_rep_has_search_pred = true;
_orbit.insert(tnode);
}
else {
_rep_has_search_pred = false;
if (CommandlineOptions::symmetries_are_affine()) {
// tnode's complete orbit does not have search predicate:
_orbitsize = 0;
return 0; // what we return does not matter anymore because _orbitsize is zero
}
}
// now check the orbit of tnode for the search predicate (e.g., regularity):
for (SymmetryGroup::const_iterator iter = _symmetries.begin();
iter != _symmetries.end();
++iter) {
#ifndef STL_SYMMETRIES
const Symmetry& g(iter->key());
#else
const Symmetry& g(*iter);
#endif
_representative = g(tnode);
#ifndef STL_CONTAINERS
if (!_orbit.member(_representative)) {
#else
if (_orbit.find(_representative) == _orbit.end()) {
#endif
if (_rep_has_search_pred && CommandlineOptions::symmetries_are_affine()) {
_orbit.insert(_representative);
}
else {
if ((*_search_pred_ptr)(*_pointsptr, *_chiroptr, _representative)) {
_orbit.insert(_representative);
}
}
}
}
}
else {
// handle the identity individually:
if ((_find_iter = _previous_triangs.find(tnode)) != _previous_triangs.end()) {
_orbitsize = 0;
return -1;
}
if ((_find_iter = _new_triangs.find(tnode)) != _new_triangs.end()) {
_orbitsize = 0;
return -2;
}
// first check whether we already found an equivalent triangluation:
for (SymmetryGroup::const_iterator iter = _symmetries.begin();
iter != _symmetries.end();
++iter) {
#ifndef STL_SYMMETRIES
const Symmetry& g(iter->key());
#else
const Symmetry& g(*iter);
#endif
_representative = g(tnode);
#ifndef STL_CONTAINERS
if (!_orbit.member(_representative)) {
#else
if (_orbit.find(_representative) == _orbit.end()) {
#endif
if ((_find_iter = _previous_triangs.find(_representative)) != _previous_triangs.end()) {
#ifndef STL_SYMMETRIES
_transformation = iter->key();
#else
_transformation = *iter;
#endif
_orbit.clear();
_orbitsize = 0;
return 1;
}
if ((_find_iter = _new_triangs.find(_representative)) != _new_triangs.end()) {
#ifndef STL_SYMMETRIES
_transformation = iter->key();
#else
_transformation = *iter;
#endif
_orbit.clear();
_orbitsize = 0;
return 2;
}
}
}
// now check the search predicate (e.g., regularity, for the
// discovered representative tnode of the new sysmmetry class:
if ((*_search_pred_ptr)(*_pointsptr, *_chiroptr, tnode)) {
// tnode has search predicate:
_rep_has_search_pred = true;
_orbit.insert(tnode);
}
else {
_rep_has_search_pred = false;
if (CommandlineOptions::symmetries_are_affine()) {
// tnode's complete orbit does not have search predicate:
_orbitsize = 0;
return 0; // what we return does not matter anymore because _orbitsize is zero
}
}
// next, we need to check the orbit of tnode for the search predicate (e.g., regularity):
for (SymmetryGroup::const_iterator iter = _symmetries.begin();
iter != _symmetries.end();
++iter) {
#ifndef STL_SYMMETRIES
const Symmetry& g(iter->key());
#else
const Symmetry& g(*iter);
#endif
_representative = g(tnode);
// check whether we already have that image of tnode in the orbit:
#ifndef STL_CONTAINERS
if (!_orbit.member(_representative)) {
#else
if (_orbit.find(_representative) == _orbit.end()) {
#endif
// if not, check the search predicate (e.g., regularity):
if (_rep_has_search_pred && CommandlineOptions::symmetries_are_affine()) {
// in this case, no check required because symmetries do not change
// the search predicate:
_orbit.insert(_representative);
}
else {
// here we need to check the orbit element directly:
if ((*_search_pred_ptr)(*_pointsptr, *_chiroptr, _representative)) {
_orbit.insert(_representative);
}
}
}
}
}
#ifndef STL_CONTAINERS
_orbitsize = _orbit.load();
#else
_orbitsize = _orbit.size();
#endif
_orbit.clear();
return 0;
}
void SymmetricBFS::_process_newtriang(const TriangNode& current_triang,
const TriangFlips& current_flips,
const TriangNode& next_triang,
const FlipRep& current_fliprep) {
const int where(_old_symmetry_class(next_triang));
if (CommandlineOptions::simple()) {
if (where != 0) {
return;
}
if (_orbitsize > 0) {
if ((*_output_pred_ptr)(*_pointsptr, *_chiroptr, next_triang)) {
++_symcount;
--_reportcount;
_totalcount += _orbitsize;
(*_cout_triang_ptr)(_symcount, next_triang);
if (CommandlineOptions::verbose() && (_reportcount == 0)) {
_reportcount = CommandlineOptions::report_frequency();
std::cerr << _symcount << " symmetry classes --- "
<< _totalcount << " total triangulations --- "
#ifndef STL_CONTAINERS
<< _all_triangs.load() + _new_triangs.load() << " stored." << std::endl;
#else
<< _all_triangs.size() + _new_triangs.size() << " stored." << std::endl;
#endif
}
}
TriangFlips next_flips;
_new_triangs[next_triang] = next_flips;
_all_triangs.insert(next_triang);
}
}
else {
if (where < 0) {
// next_triang was found before: mark all equivalent flips in next_triang:
const FlipRep& inversefliprep(current_fliprep.inverse());
_node_symmetries = SymmetryGroup(_symmetries, next_triang);
_mark_equivalent_flips(next_triang, _find_iter, inversefliprep);
if (CommandlineOptions::output_flips()) {
// output flip to found triangulation pointed to by _find_iter:
#ifndef STL_CONTAINERS
size_type next_ID(_find_iter->key().ID());
#else
size_type next_ID(_find_iter->first.ID());
#endif
std::cout << "flip["
<< _flipcount << "]:="
<< '{'
<< current_triang.ID()
<< ','
<< next_ID
<< "};"
<< " // to known triang, supported by "
<< current_fliprep
<< std::endl;
++_flipcount;
}
return;
}
if (where > 0) {
// a triangulation equivalent to next_triang was found before: mark all equivalent flips in representative:
const FlipRep& inversefliprep(_transformation(current_fliprep.inverse()));
_node_symmetries = SymmetryGroup(_symmetries, _representative);
_mark_equivalent_flips(_representative, _find_iter, inversefliprep);
return;
}
if (_orbitsize > 0) {
// we found at least one new triangulation in orbit satisfying
// the search predicate; thus we must save the representative
_node_symmetries = SymmetryGroup(_symmetries, next_triang);
TriangFlips next_flips = TriangFlips(*_chiroptr,
current_triang,
current_flips,
next_triang,
Flip(current_triang, current_fliprep),
_symmetries,
_node_symmetries,
_only_fine_triangs);
_mark_equivalent_flips(next_triang, next_flips, current_fliprep.inverse());
if (CommandlineOptions::output_flips()) {
// output flip to next_triang:
std::cout << "flip["
<< _flipcount << "]:="
<< '{'
<< current_triang.ID()
<< ','
<< next_triang.ID()
<< "};"
<< " // supported by "
<< current_fliprep
<< std::endl;
++_flipcount;
}
if ((*_output_pred_ptr)(*_pointsptr, *_chiroptr, next_triang)) {
++_symcount;
--_reportcount;
_totalcount += _orbitsize;
(*_cout_triang_ptr)(_symcount, next_triang);
if (CommandlineOptions::verbose() && (_reportcount == 0)) {
_reportcount = CommandlineOptions::report_frequency();
std::cerr << _symcount << " symmetry classes --- "
<< _totalcount << " total triangulations --- "
#ifndef STL_CONTAINERS
<< _previous_triangs.load() + _new_triangs.load()
#else
<< _previous_triangs.size() + _new_triangs.size()
#endif
<< " currently stored." << std::endl;
}
}
#ifdef CHECK_NEW
if (all_triangs.find(next_triang) != all_triangs.end()) {
std::cerr << "Error in SymmetricBFS: old triangulation:" << std::endl;
std::cerr << next_triang << std::endl;
std::cerr << "reinserted into" << std::endl;
std::cerr << all_triangs << std::endl;
std::cerr << "current new triangs:" << std::endl;
std::cerr << _new_triangs << std::endl;
std::cerr << "current previous triangs:" << std::endl;
std::cerr << _previous_triangs << std::endl;
exit(1);
}
#endif
#ifdef SUPER_VERBOSE
std::cerr << next_triang << " is new." << std::endl;
#endif
_new_triangs[next_triang] = next_flips;
}
}
}
void SymmetricBFS::_process_flips(const TriangNode& current_triang,
const TriangFlips& current_flips) {
#ifdef SUPER_VERBOSE
std::cerr << "current_triang" << std::endl;
std::cerr << current_triang << std::endl;
std::cerr << "current_flips" << std::endl;
std::cerr << current_flips << std::endl;
#endif
for (MarkedFlips::const_iterator iter = current_flips.flips().begin();
iter !=current_flips.flips().end();
++iter) {
#ifndef STL_FLIPS
if (iter->data()) {
#else
if ((*iter).second) {
#endif
continue;
}
#ifdef SUPER_VERBOSE
std::cerr << "flipping flip " << iter->key()
<< " = " << Flip(current_triang, iter->key()) << std::endl;
#endif
#ifndef STL_FLIPS
const FlipRep current_fliprep(iter->key());
#else
const FlipRep current_fliprep((*iter).first);
#endif
const Flip flip(current_triang, current_fliprep);
const TriangNode next_triang(_symcount, current_triang, flip);
_process_newtriang(current_triang, current_flips, next_triang, current_fliprep);
}
}
void SymmetricBFS::_bfs_step() {
// go through all triangulations found so far:
#ifndef STL_CONTAINERS
while (!_previous_triangs.is_empty()) {
#else
while (!_previous_triangs.empty()) {
#endif
tnode_container_type::const_iterator iter(_previous_triangs.begin());
#ifndef STL_CONTAINERS
const TriangNode current_triang(iter->key());
#else
const TriangNode current_triang(iter->first);
#endif
if (CommandlineOptions::simple()) {
const TriangFlips current_flips(*_chiroptr, current_triang, _symmetries, _only_fine_triangs);
_process_flips(current_triang, current_flips);
}
else {
#ifndef STL_CONTAINERS
const TriangFlips current_flips(iter->data());
#else
const TriangFlips current_flips(iter->second);
#endif
_process_flips(current_triang, current_flips);
}
_previous_triangs.erase(current_triang);
}
#ifdef CHECK_NEW
for (tnode_container_type::const_iterator iter = _new_triangs.begin();
iter != _new_triangs.end();
++iter) {
#ifndef STL_CONTAINERS
all_triangs[iter->key()] = iter->data();
#else
all_triangs[iter->first] = iter->second;
#endif
}
#endif
if (CommandlineOptions::verbose()) {
#ifndef STL_CONTAINERS
std::cerr << _new_triangs.load() << " new symmetry classes." << std::endl;
#else
std::cerr << _new_triangs.size() << " new symmetry classes." << std::endl;
#endif
#ifdef WATCH_MAXCHAINLEN
std::cerr << "length of maximal chain in hash table _new_triangs: "
<< _new_triangs.maxchainlen() << std::endl;
#endif
}
}
void SymmetricBFS::_bfs() {
#ifndef STL_CONTAINERS
while (!_previous_triangs.is_empty()) {
#else
while (!_previous_triangs.empty()) {
#endif
_bfs_step();
#ifndef STL_CONTAINERS
tnode_container_type tmp;
_previous_triangs = _new_triangs;
_new_triangs = tmp;
#else
_previous_triangs.swap(_new_triangs);
#endif
// dump status if requested:
if (CommandlineOptions::dump_status()) {
if (this->_processed_count % CommandlineOptions::dump_frequency() == 0) {
std::ostringstream filename_str;
filename_str << CommandlineOptions::dump_file() << "." << _dump_no % CommandlineOptions::dump_rotations();
_dump_str.open(filename_str.str().c_str(), std::ios::out | std::ios::trunc);
write(_dump_str);
_dump_str.close();
++_dump_no;
_processed_count = 0;
}
++_processed_count;
}
}
}
// stream input:
std::istream& SymmetricBFS::read(std::istream& ist) {
std::string dump_line;
while ((std::getline(ist, dump_line))) {
std::string::size_type lastPos = dump_line.find_first_not_of(" ", 0);
std::string::size_type pos = dump_line.find_first_of(" ", lastPos);
std::string keyword = dump_line.substr(lastPos, pos - lastPos);
// first, some data is parsed that makes sure that the dumped computational results were
// obtained with the "right" data:
if (keyword == "_no") {
lastPos = dump_line.find_first_not_of(" ", pos);
std::string value = dump_line.substr(lastPos, dump_line.length());
std::istringstream istrst (value, std::ios::in);
parameter_type no_check;
if (!(istrst >> no_check)) {
std::cerr << "SymmetricBFS::read(std::istream& ist): error while reading _no; exiting" << std::endl;
exit(1);
}
if (_no != no_check) {
std::cerr << "SymmetricBFS::read(std::istream& ist): no of points in input differs from no of points in dump file; exiting" << std::endl;
exit(1);
}
if (CommandlineOptions::debug()) {
std::cerr << "no of points in input coincides with no of points in dump file: okay" << std::endl;
}
}
if (keyword == "_rank") {
lastPos = dump_line.find_first_not_of(" ", pos);
std::string value = dump_line.substr(lastPos, dump_line.length());
std::istringstream istrst (value, std::ios::in);
parameter_type rank_check;
if (!(istrst >> rank_check)) {
std::cerr << "SymmetricBFS::read(std::istream& ist): error while reading _rank; exiting" << std::endl;
exit(1);
}
if (_rank != rank_check) {
std::cerr << "SymmetricBFS::read(std::istream& ist): rank of input differs from rank in dump file; exiting" << std::endl;
exit(1);
}
if (CommandlineOptions::debug()) {
std::cerr << "rank of input coincides with rank of dump file: okay" << std::endl;
}
}
if (_pointsptr) {
if (keyword == "_points") {
lastPos = dump_line.find_first_not_of(" ", pos);
std::string value = dump_line.substr(lastPos, dump_line.length());
std::istringstream istrst (value, std::ios::in);
PointConfiguration points_check;
if (!(istrst >> points_check)) {
std::cerr << "SymmetricBFS::read(std::istream& ist): error while reading _points; exiting" << std::endl;
exit(1);
}
if (*_pointsptr!= points_check) {
std::cerr << "SymmetricBFS::read(std::istream& ist): points of input differ from points in dump file; exiting" << std::endl;
exit(1);
}
if (CommandlineOptions::debug()) {
std::cerr << "points of input coincide with points in dump file: okay" << std::endl;
}
}
}
if (_chiroptr) {
if (keyword == "_chiro") {
lastPos = dump_line.find_first_not_of(" ", pos);
std::string value = dump_line.substr(lastPos, dump_line.length());
std::istringstream istrst (value, std::ios::in);
Chirotope chiro_check;
if (!(istrst >> chiro_check)) {
std::cerr << "SymmetricBFS::read(std::istream& ist): error while reading _chiro; exiting" << std::endl;
exit(1);
}
if ((*_chiroptr) != chiro_check) {
std::cerr << "SymmetricBFS::read(std::istream& ist): chirotope of input differs from chirotope in dump file; exiting" << std::endl;
exit(1);
}
if (CommandlineOptions::debug()) {
std::cerr << "chirotope of input coincides with chirotope of dump file: okay" << std::endl;
}
}
}
if (keyword == "_symmetries") {
lastPos = dump_line.find_first_not_of(" ", pos);
std::string value = dump_line.substr(lastPos, dump_line.length());
std::istringstream istrst (value, std::ios::in);
SymmetryGroup symmetries_check(_no);
if (!(istrst >> symmetries_check)) {
std::cerr << "SymmetricBFS::read(std::istream& ist): error while reading _symmetries; exiting" << std::endl;
exit(1);
}
if (_symmetries != symmetries_check) {
std::cerr << "SymmetricBFS::read(std::istream& ist): symmetries of input differ from symmetries in dump file; exiting" << std::endl;
exit(1);
}
if (CommandlineOptions::debug()) {
std::cerr << "symmetries of input coincide with _symmetries in dump file: okay" << std::endl;
}
}
// finally, parse the partial computational result from the dump file:
if (keyword == "_previous_triangs") {
lastPos = dump_line.find_first_not_of(" ", pos);
std::string value = dump_line.substr(lastPos, dump_line.length());
std::istringstream istrst (value, std::ios::in);
if (!(istrst >> _previous_triangs)) {
std::cerr << "SymmetricBFS::read(std::istream& ist): error while reading _previous_triangs; exiting" << std::endl;
exit(1);
}
if (CommandlineOptions::debug()) {
std::cerr << "_previous_triangs initialized with " << _previous_triangs << std::endl;
}
}
if (keyword == "_new_triangs") {
lastPos = dump_line.find_first_not_of(" ", pos);
std::string value = dump_line.substr(lastPos, dump_line.length());
std::istringstream istrst (value, std::ios::in);
if (!(istrst >> _new_triangs)) {
std::cerr << "SymmetricBFS::read(std::istream& ist): error while reading _previous_triangs; exiting" << std::endl;
exit(1);
}
if (CommandlineOptions::debug()) {
std::cerr << "_new_triangs initialized with " << _new_triangs << std::endl;
}
}
if (keyword == "_totalcount") {
lastPos = dump_line.find_first_not_of(" ", pos);
std::string value = dump_line.substr(lastPos, dump_line.length());
std::istringstream istrst (value, std::ios::in);
if (!(istrst >> _totalcount)) {
std::cerr << "SymmetricBFS::read(std::istream& ist): error while reading _totalcount; exiting" << std::endl;
exit(1);
}
if (CommandlineOptions::debug()) {
std::cerr << "_totalcount initialized with " << _totalcount << std::endl;
}
}
if (keyword == "_symcount") {
lastPos = dump_line.find_first_not_of(" ", pos);
std::string value = dump_line.substr(lastPos, dump_line.length());
std::istringstream istrst (value, std::ios::in);
if (!(istrst >> _symcount)) {
std::cerr << "SymmetricBFS::read(std::istream& ist): error while reading _symcount; exiting" << std::endl;
exit(1);
}
if (CommandlineOptions::debug()) {
std::cerr << "_symcount initialized with " << _symcount << std::endl;
}
}
if (keyword == "_reportcount") {
lastPos = dump_line.find_first_not_of(" ", pos);
std::string value = dump_line.substr(lastPos, dump_line.length());
std::istringstream istrst (value, std::ios::in);
if (!(istrst >> _reportcount)) {
std::cerr << "SymmetricBFS::read(std::istream& ist): error while reading _reportcount; exiting" << std::endl;
exit(1);
}
if (CommandlineOptions::debug()) {
std::cerr << "_reportcount initialized with " << _reportcount << std::endl;
}
}
}
return ist;
}
// eof SymmetricBFS.cc
|