1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
////////////////////////////////////////////////////////////////////////////////
//
// TriangFlips.cc
//
// produced: 27/05/98 jr
// last change: 27/05/98 jr
//
////////////////////////////////////////////////////////////////////////////////
#include <iostream>
#include <set>
#include "Flip.hh"
#include "TriangFlips.hh"
// internal algorithms:
void TriangFlips::_remove_destroyed_flips(const TriangNode& tn,
const Flip& flip,
const SymmetryGroup& symmetries) {
static MarkedFlips old_flips;
old_flips = _flips;
for (MarkedFlips::const_iterator iter = old_flips.begin(); iter != old_flips.end(); ++iter) {
#ifndef STL_FLIPS
const FlipRep fliprep(iter->key());
#else
const FlipRep fliprep((*iter).first);
#endif
const Flip old_flip = Flip(tn, fliprep);
if (!(old_flip.first * flip.first).is_empty()) {
_flips.erase(fliprep);
}
}
}
void TriangFlips::_add_new_flips(const Chirotope& chiro,
const TriangNode& tn,
const SimplicialComplex& restriction,
const SymmetryGroup& symmetries,
const SymmetryGroup& tn_symmetries,
const bool forbid_vertex_removal,
const bool forbid_card_change) {
#ifndef STL_CONTAINERS
static HashSet<dependent_set_type> dependent_sets;
#else
static std::set<dependent_set_type> dependent_sets;
#endif
static dependent_set_type dependent_set;
#ifndef STL_CONTAINERS
static SimplicialComplex done_set;
#else
static std::set<Simplex> done_set;
#endif
const Simplex tn_support(tn.support());
const Simplex groundset(Permutation(_no, _no));
const Simplex missing_vertices(groundset - tn_support);
// any new flip in tn must contain one of the flipped-in simplices:
size_type countdown(restriction.card());
for (SimplicialComplex::const_iterator iter1 = restriction.begin();
iter1 != restriction.end();
++iter1) {
--countdown;
const Simplex& simp1(*iter1);
#ifndef STL_CONTAINERS
if (done_set.contains(simp1, _rank)) {
#else
if (done_set.find(simp1) != done_set.end()) {
#endif
// processed already:
continue;
}
#ifndef STL_CONTAINERS
done_set.insert(simp1, _rank);
#else
done_set.insert(simp1);
#endif
for (SymmetryGroup::const_iterator sym_iter = tn_symmetries.begin();
sym_iter != tn_symmetries.end();
++sym_iter) {
const Symmetry& g(*sym_iter);
#ifndef STL_CONTAINERS
done_set.insert(g(simp1), _rank);
#else
done_set.insert(g(simp1));
#endif
}
if (CommandlineOptions::verbose() && (_no > 50)) {
std::cerr << "... still " << countdown << " simplices to check for flips ..." << std::endl;
}
// search for missing interior points:
for (Simplex::const_iterator missing_iter = missing_vertices.begin();
missing_iter != missing_vertices.end();
++missing_iter) {
dependent_set = simp1 + *missing_iter;
#ifndef STL_CONTAINERS
if (dependent_sets.member(dependent_set)) {
#else
if (dependent_sets.find(dependent_set) != dependent_sets.end()) {
#endif
// processed already:
continue;
}
// try to build a flip from dependent_set:
const FlipRep fliprep(chiro, dependent_set, tn);
if (fliprep) {
// succeeded:
if (forbid_vertex_removal && fliprep.kills_vertex()) {
continue;
}
if (forbid_card_change && !fliprep.is_balanced()) {
continue;
}
// else if (CommandlineOptions::reduce_points() && !fliprep.kills_vertex()) {
// continue;
// }
// else if (CommandlineOptions::dont_add_points() && fliprep.adds_vertex()) {
// continue;
// }
// insert flip:
_flips[fliprep] = false;
dependent_sets.insert(dependent_set);
for (SymmetryGroup::const_iterator sym_iter = tn_symmetries.begin();
sym_iter != tn_symmetries.end();
++sym_iter) {
// insert all equivalent flips:
const Symmetry& g(*sym_iter);
_flips[g(fliprep)] = false;
dependent_sets.insert(g(dependent_set));
}
}
else {
// save processed dependent set:
dependent_sets.insert(dependent_set);
for (SymmetryGroup::const_iterator sym_iter = tn_symmetries.begin();
sym_iter != tn_symmetries.end();
++sym_iter) {
// save equivalent dependent sets:
const Symmetry& g(*sym_iter);
dependent_sets.insert(g(dependent_set));
}
}
}
int count(0);
// search for adjacent simplices:
for (SimplicialComplex::const_iterator iter2 = tn.begin();
iter2 != tn.end();
++iter2) {
const Simplex& simp2(*iter2);
dependent_set = (simp1 + simp2);
if (dependent_set.card() != _rank + 1) {
continue;
}
// simp2 is adjacent to simp1:
#ifndef STL_CONTAINERS
if (dependent_sets.member(dependent_set)) {
#else
if (dependent_sets.find(dependent_set) != dependent_sets.end()) {
#endif
// processed already:
continue;
}
// try to build a flip from dependent_set:
const FlipRep fliprep(chiro, dependent_set, tn);
if (fliprep) {
// succeeded:
if (forbid_vertex_removal && fliprep.kills_vertex()) {
continue;
}
// else if (CommandlineOptions::reduce_points() && !fliprep.kills_vertex()) {
// continue;
// }
else if (CommandlineOptions::dont_add_points() && fliprep.adds_vertex()) {
continue;
}
// insert flip:
_flips[fliprep] = false;
dependent_sets.insert(dependent_set);
for (SymmetryGroup::const_iterator sym_iter = tn_symmetries.begin();
sym_iter != tn_symmetries.end();
++sym_iter) {
// insert all equivalent flips:
const Symmetry& g(*sym_iter);
_flips[g(fliprep)] = false;
dependent_sets.insert(g(dependent_set));
}
}
else {
// save processed dependent set:
dependent_sets.insert(dependent_set);
for (SymmetryGroup::const_iterator sym_iter = tn_symmetries.begin();
sym_iter != tn_symmetries.end();
++sym_iter) {
// save equivalent dependent sets:
const Symmetry& g(*sym_iter);
dependent_sets.insert(g(dependent_set));
}
}
if (++count > _rank) {
// we have all neighbors already:
break;
}
}
}
dependent_sets.clear();
done_set.clear();
if (!forbid_vertex_removal
&& CommandlineOptions::neighborcount()
#ifndef STL_FLIPS
&& (_flips.load() < _no - _rank)) {
#else
&& (_flips.size() < _no - _rank)) {
#endif
std::cerr << "triangulation" << std::endl
<< tn << std::endl
#ifndef STL_FLIPS
<< "has only " << _flips.load() << " flips." << std::endl;
#else
<< "has only " << _flips.size() << " flips." << std::endl;
#endif
}
}
// eof TriangFlips.cc
|