1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
////////////////////////////////////////////////////////////////////////////////
//
// ComputeCocircuits.cc
//
// produced: 29/01/2020 jr
// last change: 29/01/2020 jr
//
////////////////////////////////////////////////////////////////////////////////
#include <iostream>
#include "CommandlineOptions.hh"
#include "LabelSet.hh"
#include "Cocircuits.hh"
#include "Permutation.hh"
#include "Symmetry.hh"
#include "SymmetricSubsetGraphMaster.hh"
#include "ComputeCocircuits.hh"
namespace topcom {
int ComputeCocircuits::run(const int flags) {
const bool input_chiro = flags & INPUT_CHIRO;
const bool output_cocircuits = flags & OUTPUT_COCIRCUITS;
const bool preprocess = flags & PREPROCESS;
bool from_chiro = flags & FROM_CHIRO;
if (CommandlineOptions::verbose()) {
std::cerr << std::endl;
std::cerr << "------------------------------------------------------------\n";
std::cerr << "------------------ " << PACKAGE << " VERSION " << VERSION << " -------------------\n";
std::cerr << "Triangulations of Point Configurations and Oriented Matroids\n";
std::cerr << "--------------------- by Joerg Rambau ----------------------\n";
std::cerr << "------------------------------------------------------------\n";
std::cerr << std::endl;
}
if (CommandlineOptions::verbose()) {
std::cerr << std::endl;
std::cerr << "------------------------------------------------------------\n";
std::cerr << "computing cocircuits of a point configuration up to symmetry\n";
std::cerr << "------------------------------------------------------------\n";
std::cerr << std::endl;
#ifdef STL_CONTAINERS
std::cerr << " -- using STL containers for hash tables --" << std::endl;
#endif
#ifdef STL_SYMMETRIES
std::cerr << " -- using STL containers for symmetries --" << std::endl;
#endif
std::cerr << std::endl;
}
Chirotope chiro;
PointConfiguration points;
if (input_chiro) {
from_chiro = true; // no way to use the direct computation method here
if (!chiro.read_string(std::cin)) {
if (CommandlineOptions::verbose()) {
std::cerr << "error while reading chirotope." << std::endl;
}
return 1;
}
if (CommandlineOptions::verbose()) {
std::cerr << "read chirotope with " << chiro.no()
<< " elements in rank " << chiro.rank() << std::endl;
}
}
else {
if (!points.read(std::cin)) {
if (CommandlineOptions::verbose()) {
std::cerr << "error while reading point configuration." << std::endl;
}
return 1;
}
points.transform_to_full_rank();
if ((points.no() < 2) || (points.rank() < 2)) {
if (CommandlineOptions::verbose()) {
std::cerr << "no of points and rank must be at least two." << std::endl;
}
return 1;
}
if (points.rank() > points.no()) {
if (CommandlineOptions::verbose()) {
std::cerr << "rank must not be larger than no of points." << std::endl;
}
return 1;
}
if (CommandlineOptions::verbose()) {
std::cerr << "read point configuration with " << points.no()
<< " points in rank " << points.rank() << std::endl;
}
chiro = Chirotope(points, preprocess);
}
size_type no(chiro.no());
size_type rank(chiro.rank());
SymmetryGroup symmetries(no);
if (!CommandlineOptions::ignore_symmetries()) {
if (CommandlineOptions::use_switch_tables()) {
// if (false) {
if (symmetries.read_generators(std::cin)) {
std::cerr << "read " << symmetries.generators().size()
<< " generators" << std::endl;
if (CommandlineOptions::debug()) {
std::cerr << "symmetries.generators():" << std::endl;
std::cerr << symmetries.generators() << std::endl;
}
}
}
else {
if (symmetries.read(std::cin)) {
if (CommandlineOptions::verbose()) {
std::cerr << "read symmetry group with " << symmetries.generators().size()
<< " generators of order " << symmetries.size() + 1 << std::endl;
if (CommandlineOptions::debug()) {
std::cerr << "symmetries:" << std::endl;
std::cerr << symmetries << std::endl;
}
}
}
}
}
else {
if (CommandlineOptions::verbose()) {
std::cerr << "no valid symmetry generators found." << std::endl;
}
}
if (CommandlineOptions::preprocess_points()) {
Symmetry transformation(points.no());
points.preprocess(transformation);
symmetries.transform(transformation);
}
size_type iterations(0);
size_type count(0);
size_type total_count(0);
size_type node_count(0);
if (from_chiro) {
// prefix for output:
if (output_cocircuits) {
std::cout << chiro.no() << ',' << chiro.rank() << ":\n{\n";
}
// effort estimation:
size_type no_of_spanningsets(_binomial(no, rank - 1));
// counters:
// use either as full storage or cache of already processed sets:
const bool activate_cache(!CommandlineOptions::memopt() || (CommandlineOptions::localcache() > 0));
spanning_sets_type support_sets;
spanning_sets_type done_sets;
if (CommandlineOptions::memopt()) {
if (activate_cache) {
done_sets = spanning_sets_type(std::min<size_type>(CommandlineOptions::localcache(), no_of_spanningsets));
}
}
else {
done_sets = spanning_sets_type(no_of_spanningsets);
}
// use for storage of canonical representatives:
spanning_sets_type canonical_support_sets;
spanning_sets_type canonical_spanning_sets;
spanning_sets_type orbit;
Permutation dependent_perm(no, rank - 1);
do {
if (CommandlineOptions::verbose() && (++iterations % CommandlineOptions::report_frequency() == 0)) {
std::cerr << count << " symmetry classes --- "
<< total_count << " total cocircuits ("
<< iterations << " out of "
<< no_of_spanningsets << " " << rank - 1 << "-sets investigated [cache load: "
<< done_sets.size() << ", cache size: "
<< done_sets.bucket_count() << "])"
<< std::endl;
}
if (done_sets.size() == no_of_spanningsets) {
break;
}
spanning_set_type spanning_set(dependent_perm);
if (CommandlineOptions::debug()) {
std::cerr << "investigating " << spanning_set << " ..." << std::endl;
}
if ((activate_cache) && (done_sets.find(spanning_set) != done_sets.end())) {
// already considered and stored/cached:
continue;
}
spanning_set_type canonical_spanning_set = spanning_set;
bool old_spanning_set = false;
for (SymmetryGroup::const_iterator iter = symmetries.begin();
iter != symmetries.end();
++iter) {
// canonicalize the dependent set:
const Symmetry& g(*iter);
const spanning_set_type equivalent_spanning_set(g.map(spanning_set));
if (done_sets.find(equivalent_spanning_set) != done_sets.end()) {
// symmetric variant of spanning_set has been stored/cached as done:
if (CommandlineOptions::debug()) {
std::cerr << equivalent_spanning_set << " has been investigated already." << std::endl;
}
old_spanning_set = true;
break;
}
else if (canonical_spanning_sets.find(equivalent_spanning_set) != canonical_spanning_sets.end()) {
// symmetric variant of spanning_set has already been investigated:
old_spanning_set = true;
break;
}
}
if (old_spanning_set) {
// nothing new:
continue;
}
// else add the canonicalized dependent set to the set of already considered sets:
canonical_spanning_sets.insert(canonical_spanning_set);
// store/cache the dependent set as done:
if (activate_cache) {
if (CommandlineOptions::memopt()) {
if (CommandlineOptions::localcache() > 0) {
if (CommandlineOptions::localcache() > done_sets.size()) {
done_sets.insert(spanning_set);
// done_sets.erase_random();
}
}
}
else {
done_sets.insert(spanning_set);
}
}
// store/cache all equivalent dependent sets:
for (SymmetryGroup::const_iterator iter = symmetries.begin();
iter != symmetries.end();
++iter) {
// canonicalize the support set:
const Symmetry& g(*iter);
const spanning_set_type equivalent_spanning_set(g.map(spanning_set));
if (activate_cache) {
if (CommandlineOptions::memopt()) {
if (CommandlineOptions::localcache() > 0) {
if (CommandlineOptions::localcache() > done_sets.size()) {
done_sets.insert(equivalent_spanning_set);
// done_sets.erase_random();
}
}
}
else {
done_sets.insert(equivalent_spanning_set);
}
}
}
Cocircuit cocircuit(chiro, spanning_set);
if (!cocircuit.first.empty() || !cocircuit.second.empty()) {
if (CommandlineOptions::debug()) {
std::cerr << "computing cocircuit support (i.e., 0-set) for " << spanning_set << " ..." << std::endl;
}
spanning_set_type support_set(0, no);
support_set -= cocircuit.first;
support_set -= cocircuit.second;
bool old_support_set = false;
spanning_set_type canonical_support_set = support_set;
if (support_sets.find(support_set) != support_sets.end()) {
// the cocircuit support is in the storage/cache:
old_support_set = true;
}
else if (canonical_support_sets.find(support_set) != canonical_support_sets.end()) {
// the cocircuit support was found already:
old_support_set = true;
}
else {
for (SymmetryGroup::const_iterator iter = symmetries.begin();
iter != symmetries.end();
++iter) {
// canonicalize the support set:
const Symmetry& g(*iter);
const spanning_set_type equivalent_support_set(g.map(support_set));
if (support_sets.find(equivalent_support_set) != support_sets.end()) {
// a symmetric image of the cocircuit support is in the storage
old_support_set = true;
break;
}
else if (canonical_support_sets.find(equivalent_support_set) != canonical_support_sets.end()) {
// a symmetric image of the cocircuit support was found already
old_support_set = true;
break;
}
}
}
if (!old_support_set) {
if (output_cocircuits) {
std::cout << cocircuit << '\n';
}
// add the canonicalized support set to the set of already found canonical support sets:
canonical_support_sets.insert(canonical_support_set);
// insert into support sets:
if (activate_cache) {
if (CommandlineOptions::memopt()) {
if (CommandlineOptions::localcache() > 0) {
if (CommandlineOptions::localcache() > support_sets.size()) {
support_sets.insert(support_set);
// support_sets.erase_random();
}
}
}
else {
support_sets.insert(support_set);
}
}
// we now need to count the number of support sets in the orbit:
orbit.insert(support_set);
for (SymmetryGroup::const_iterator iter = symmetries.begin();
iter != symmetries.end();
++iter) {
// store all equivalent support sets:
const Symmetry& g(*iter);
const spanning_set_type equivalent_support_set(g.map(support_set));
orbit.insert(equivalent_support_set);
// store/cache all equivalent support sets as found:
if (activate_cache) {
if (CommandlineOptions::memopt()) {
if (CommandlineOptions::localcache() > 0) {
if (CommandlineOptions::localcache() > support_sets.size()) {
support_sets.insert(equivalent_support_set);
// support_sets.erase_random();
}
}
}
else {
support_sets.insert(equivalent_support_set);
}
}
}
total_count += orbit.size();
count += 1;
orbit.clear();
}
}
if (CommandlineOptions::debug()) {
std::cerr << "... done." << std::endl;
}
} while (dependent_perm.lexnext());
if (CommandlineOptions::verbose()) {
std::cerr << count << " symmetry classes --- " << total_count << " total cocircuits." << std::endl;
}
if (!output_cocircuits) {
std::cout << count << std::endl;
}
else {
std::cout << "}" << std::endl;
}
return 0;
}
else {
// if we know the points, we can enumerate cocircuits in a smarter way:
SymmetricSubsetGraphMaster<cocircuits> ssgm(points.no(),
points.rank(),
points,
symmetries,
output_cocircuits,
true);
const Integer uniform_number = binomial(Integer(points.no()), Integer(points.rank() - 1));
if (CommandlineOptions::verbose()) {
std::cerr << ssgm.symcount() << " symmetry classes";
if (!CommandlineOptions::skip_orbitcount()) {
std::cerr << " | " << ssgm.totalcount() << " total cocircuits";
}
std::cerr << " using " << ssgm.nodecount() << " nodes";
std::cerr << " | " << ssgm.deadendcount() << " branching deadends";
std::cerr << " | " << ssgm.earlydeadendcount() << " early detected deadends";
std::cerr << "." << std::endl;
std::cerr << "(total number is " << ssgm.totalcount() * 100.0 / uniform_number.get_d()
<< "% of uniform number = " << uniform_number
<< ")";
std::cerr << std::endl;
}
if (!output_cocircuits) {
std::cout << ssgm.symcount() << std::endl;
}
return 0;
}
}
}; // namespace topcom
// eof
|