1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
////////////////////////////////////////////////////////////////////////////////
//
// PointConfiguration.cc
//
// produced: 13/03/98 jr
// last change: 13/03/98 jr
//
////////////////////////////////////////////////////////////////////////////////
#include <iostream>
#include <ctype.h>
#include <string.h>
#include "PointConfiguration.hh"
#include "Chirotope.hh"
#include "PlacingTriang.hh"
#include "StairCaseMatrix.hh"
#include "StrictStairCaseMatrix.hh"
#include "StrictStairCaseMatrixTrans.hh"
#include "Symmetry.hh"
#include "SimplicialComplex.hh"
namespace topcom {
const int PointConfiguration::zeroes_in_row(const size_type index) const {
int result = 0;
for (size_type i = 0; i < coldim(); ++i) {
if ((*this)(index,i) == FieldConstants::ZERO) {
++result;
}
}
return result;
}
const int PointConfiguration::zeroes_in_col(const size_type index) const {
int result = 0;
for (size_type i = 0; i < rowdim(); ++i) {
if ((*this)(i,index) == FieldConstants::ZERO) {
++result;
}
}
return result;
}
const Field PointConfiguration::volume() const {
Field result(0);
const PlacingTriang pt(Chirotope(*this, false));
for (SimplicialComplex::const_iterator iter = pt.begin();
iter != pt.end();
++iter) {
result += volume(*iter);
}
return result;
}
const Field PointConfiguration::volume(const Simplex& simp) const {
StairCaseMatrix basis_matrix;
for (Simplex::const_iterator iter = simp.begin();
iter != simp.end();
++iter) {
basis_matrix.augment(this->col(*iter));
}
return abs(basis_matrix.det());
}
PointConfiguration& PointConfiguration::prism() {
PointConfiguration new_cols(*this);
for (size_type i = 0; i < no(); ++i) {
this->col(i).push_back(FieldConstants::ZERO);
new_cols.col(i).push_back(FieldConstants::ONE);
}
#ifndef STL_CONTAINERS
push_back(new_cols);
#else
insert(end(), new_cols.begin(), new_cols.end());
#endif
return *this;
}
PointConfiguration& PointConfiguration::pyramid() {
Vector new_col(rank(), FieldConstants::ZERO);
for (size_type i = 0; i < no(); ++i) {
this->col(i).push_back(FieldConstants::ZERO);
}
new_col.push_back(FieldConstants::ONE);
push_back(new_col);
return *this;
}
PointConfiguration& PointConfiguration::direct_sum(const PointConfiguration& p) {
PointConfiguration new_cols = Matrix(rank(), p.no(), FieldConstants::ZERO);
for (size_type i = 0; i < no(); ++i) {
#ifndef STL_CONTAINERS
this->(i).push_back(Vector(p.rank(), FieldConstants::ZERO));
#else
Vector extension(p.rank(), FieldConstants::ZERO);
this->col(i).insert(this->col(i).end(), extension.begin(), extension.end());
#endif
}
for (size_type i = 0; i < p.no(); ++i) {
#ifndef STL_CONTAINERS
new_cols.col(i).push_back(p.col(i));
#else
new_cols.col(i).insert(new_cols.col(i).end(), p.col(i).begin(), p.col(i).end());
#endif
}
#ifndef STL_CONTAINERS
push_back(new_cols);
#else
insert(end(), new_cols.begin(), new_cols.end());
#endif
return *this;
}
PointConfiguration& PointConfiguration::homogenize() {
stack(Matrix(1, no(), FieldConstants::ONE));
return *this;
}
PointConfiguration& PointConfiguration::transform_to_full_rank() {
pretty_print(std::cerr);
Matrix::row_echelon_form();
return *this;
}
PointConfiguration PointConfiguration::gale() const {
if (coldim() == 0) {
return *this;
}
StrictStairCaseMatrixTrans eliminator;
eliminator.augment(*this);
const Matrix kernel(eliminator.transformation(), rowdim(), coldim());
if (CommandlineOptions::debug()) {
std::cerr << "points:" << std::endl;
pretty_print(std::cerr);
std::cerr << "kernel:" << std::endl;
kernel.pretty_print(std::cerr);
std::cerr << "points * kernel = " << multiply(*this, kernel) << std::endl;
}
return PointConfiguration(kernel.transpose());
}
PointConfiguration PointConfiguration::product(const PointConfiguration& p) const {
PointConfiguration result = Matrix(0, no() * p.no());
const ProductIndex product_index(no(), p.no());
if ((no() == 0) || (p.no() == 0)) {
return result;
}
for (size_type i = 0; i < no(); ++i) {
for (size_type j = 0; j < p.no(); ++j) {
result.col(product_index(i,j)) = this->col(i);
#ifndef STL_CONTAINERS
result[product_index(i,j)].push_back(p[j]);
#else
result.col(product_index(i,j)).insert(result.col(product_index(i,j)).end(), p.col(j).begin(), p.col(j).end());
#endif
}
}
return result;
}
PointConfiguration& PointConfiguration::sort_rows() {
for (size_type i = 0; i < rowdim(); ++i) {
for (size_type j = i + 1; j < rowdim(); ++j) {
if (zeroes_in_row(j) < zeroes_in_row(i)) {
swap_rows(i, j);
}
}
}
return *this;
}
PointConfiguration& PointConfiguration::lex_abs_sort_cols(Symmetry& sym) {
std::cerr << "sorting the points " << std::endl;
pretty_print(std::cerr);
std::cerr << "with transformation permutation " << sym << std::endl;
Symmetry new_sym(no());
for (size_type i = 0; i < no(); ++i) {
for (size_type j = i + 1; j < no(); ++j) {
if (lex_abs_compare(this->col(j), this->col(i))) {
swap_cols(i, j);
new_sym.transpose(i, j);
}
}
}
std::cerr << "resulting in " << std::endl;
pretty_print(std::cerr);
std::cerr << "with transformation permutation " << new_sym << std::endl;
sym = sym * new_sym;
std::cerr << "with total permutation of " << sym << std::endl;
return *this;
}
// preprocessing the points can help the (co-)circuits enumeration
// to start with easy eliminations in the beginning and hoping
// that later combinations with more numbers are covered by symmetries:
PointConfiguration& PointConfiguration::preprocess(Symmetry& sym) {
// Symmetry new_sym(no());
std::cerr << "preprocessing the points ..." << std::endl;
sort_rows();
row_echelon_form();
// lex_abs_sort_cols(new_sym);
// reverse(new_sym);
// sym = sym * new_sym;
// std::cerr << "... done - resulting transformation permutation " << sym << std::endl;
std::cerr << "resulting in " << std::endl;
pretty_print(std::cerr);
return *this;
}
PointConfiguration& PointConfiguration::reverse(Symmetry& sym) {
Symmetry new_sym(Symmetry(no()).reverse());
std::cerr << "reversing the points " << std::endl;
pretty_print(std::cerr);
std::cerr << "with transformation permutation " << sym << std::endl;
PointConfiguration tmp(*this);
for (size_type i = 0; i < tmp.no(); ++i) {
this->col(coldim() - i - 1) = tmp.col(i);
}
std::cerr << "resulting in " << std::endl;
pretty_print(std::cerr);
std::cerr << "with transformation permutation " << new_sym << std::endl;
sym = sym * new_sym;
std::cerr << "with total permutation of " << sym << std::endl;
return *this;
}
const parameter_type PointConfiguration::_compute_rank() const {
if (empty()) {
return 0;
}
parameter_type rank(0);
parameter_type i(0);
StrictStairCaseMatrix transformed_points(this->col(i));
if (!this->col(i).is_zero()) {
++rank;
}
++i;
while ((i < coldim()) && (rank < rowdim())) {
transformed_points.augment(this->col(i));
rank = transformed_points.rank();
++i;
}
return rank;
}
}; // namespace topcom
// eof PointConfiguration.cc
|