1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
//////////////////////////////////////////////////////////////////////////
// SymmetricExtensionGraphNode.hh
// produced: 27/11/2020 jr
// last change: 27/11/2020 jr
/////////////////////////////////////////////////////////////////////////
#ifndef SYMMETRICEXTENSIONGRAPHNODE_HH
#define SYMMETRICEXTENSIONGRAPHNODE_HH
#include <iostream>
#include <iomanip>
#include <vector>
#include <queue>
#include <unordered_map>
#include <mutex>
#include "ContainerIO.hh"
#include "HashKey.hh"
#include "LabelSet.hh"
#include "Symmetry.hh"
#include "SimplicialComplex.hh"
#include "Admissibles.hh"
#include "Incidences.hh"
#include "Volumes.hh"
#include "PartialTriang.hh"
namespace topcom {
// the following type can store for each symmetry g
// the minimal index of the symmetric difference of a partial triangulation T and its image g(T)
// where the convention is that the critical simplex index is std::numeric_limits<size_type>::max() if S = g(S)
// (the simplex with this index decides the lexicographic comparison);
// in order to save memory, we store a vector of critical indices
// where critical_element[idx] is the index of the critical simplex for symmetries[idx]:
typedef std::vector<size_type> critical_simpidx_table_type;
// for the case of scarce memory we offer a cache for the symmetries represented by images of
// simplex indices; to this end, a pair of indices is defined with the necessary features
// for an unordered map:
class IndexPair : public std::pair<size_type, size_type> {
public:
inline IndexPair(const size_type simpidx, const size_type symidx) : std::pair<size_type, size_type>(simpidx, symidx) {}
inline size_type keysize() const { return 2; }
inline size_type key(const size_type n) const { return n == 0 ? first : second; }
inline bool operator==(const IndexPair& ip) { return (second == ip.second) && (first == ip.first); }
};
// use if memory is not an issue:
typedef std::vector<std::vector<size_type> > symmetry_table_type;
// use if memory is scarce:
typedef std::pair<IndexPair, size_type> symmetry_cache_entry_type;
typedef std::vector<symmetry_cache_entry_type> symmetry_cache_type;
typedef std::queue<IndexPair> symmetry_keyvec_type;
class SymmetricExtensionGraphNode {
public:
static symmetry_table_type _symmetry_images_by_element;
static thread_local symmetry_cache_type _symmetry_images_by_element_cache;
// static thread_local symmetry_keyvec_type _symmetry_images_by_element_keyvec;
private:
const SymmetryGroup* _symmetriesptr;
PartialTriang _partial_triang;
critical_simpidx_table_type _critsimpidx_table;
private:
SymmetricExtensionGraphNode();
public:
// initializer for static data:
inline static void init_simpidx_table(const SymmetryGroup*, const size_type);
inline static void init_simpidx_cache(const SymmetryGroup*);
// constructors:
inline SymmetricExtensionGraphNode(const SymmetricExtensionGraphNode&);
inline SymmetricExtensionGraphNode(const SymmetricExtensionGraphNode&&);
inline SymmetricExtensionGraphNode(const SymmetricExtensionGraphNode&,
const PartialTriang&,
const critical_simpidx_table_type&);
inline SymmetricExtensionGraphNode(const SymmetricExtensionGraphNode&,
PartialTriang&&,
critical_simpidx_table_type&&);
// compute a node from scratch for double-check purposes
// (the root node is computed for pt = empty partial triangulation):
SymmetricExtensionGraphNode(const SymmetryGroup*,
const PartialTriang&&);
// destructor:
inline ~SymmetricExtensionGraphNode();
// assignment:
inline SymmetricExtensionGraphNode& operator=(const SymmetricExtensionGraphNode&);
inline SymmetricExtensionGraphNode& operator=(const SymmetricExtensionGraphNode&&);
// functions:
// the following is the core function:
// it checks whether the child node of this node by extending partial triangulation by a new simplex
// is lex-minimal; it is assumed that the new simplex has an index that is larger than all the existing
// simplices in the partial triangulation; the critical simplex table is updated during the checking process
// and returned in the second part of the returned pair:
bool child_is_lexmin(const Simplex&, critical_simpidx_table_type*, size_type*) const;
// the same, but based on the symmetry group representation on points:
bool child_is_lexmin_lean(const Simplex&, critical_simpidx_table_type*, size_type*) const;
// auxiliary function to compute critical simplex from scratch for a symmetry:
size_type critical_simpidx(const SimplicialComplex&, const Symmetry&) const;
// the same, but based on the symmetry group representation on points:
size_type critical_simpidx_lean(const SimplicialComplex&, const Symmetry&, const size_type) const;
// accessors:
inline const SymmetryGroup* symmetries_ptr() const { return _symmetriesptr; }
inline const PartialTriang& partial_triang() const { return _partial_triang; }
inline const critical_simpidx_table_type& critsimpidx_table() const { return _critsimpidx_table; }
// stream input/output:
inline std::istream& read(std::istream&);
inline std::ostream& write(std::ostream&) const;
};
// initializer for static data:
inline void SymmetricExtensionGraphNode::init_simpidx_table(const SymmetryGroup* sgptr, const size_type n) {
if (CommandlineOptions::simpidx_symmetries()) {
// here, we simply reorganize the symmetries in a more cache coherent way in a new table:
try {
_symmetry_images_by_element.resize(sgptr->n(), std::vector<size_type>(sgptr->size(), std::numeric_limits<size_type>::max()));
}
catch (...) {
std::lock_guard<std::mutex> lock(IO_sync::mutex);
std::cerr << "SymmetricExtensionGraphNode::SymmetricExtensionGraphNode(const SymmetryGroup&, const PartialTriang&): "
<< "allocation of " << sgptr->size() * sgptr->n() << " int elements failed - exiting"
<< std::endl;
exit(1);
}
for (size_type symidx = 0; symidx < sgptr->size(); ++symidx) {
for (parameter_type elm = 0; elm < sgptr->n(); ++elm) {
_symmetry_images_by_element[elm][symidx] = (*sgptr)[symidx][elm];
}
}
}
else {
if (!CommandlineOptions::memopt()) {
// here, we prepare a complete table that is populated on the fly when needed:
try {
_symmetry_images_by_element.resize(n, std::vector<size_type>(sgptr->size(), std::numeric_limits<size_type>::max()));
}
catch (...) {
std::lock_guard<std::mutex> lock(IO_sync::mutex);
std::cerr << "SymmetricExtensionGraphNode::SymmetricExtensionGraphNode(const SymmetryGroup&, const PartialTriang&): "
<< "allocation of " << sgptr->size() * n << " int elements failed - exiting"
<< std::endl;
exit(1);
}
}
else if (!CommandlineOptions::parallel_enumeration()) {
// in this case, the main thread needs to initialize the thread_local cache:
init_simpidx_cache(sgptr);
}
}
}
inline void SymmetricExtensionGraphNode::init_simpidx_cache(const SymmetryGroup* sgptr) {
if (!CommandlineOptions::simpidx_symmetries() && CommandlineOptions::memopt()) {
if (CommandlineOptions::localcache() > 0) {
std::lock_guard<std::mutex> lock(IO_sync::mutex);
std::cerr << "init cache:" << std::endl;
_symmetry_images_by_element_cache.resize(CommandlineOptions::localcache() / CommandlineOptions::no_of_threads() + 1,
std::pair<IndexPair, size_type>(IndexPair(std::numeric_limits<size_type>::max(),
std::numeric_limits<size_type>::max()),
std::numeric_limits<size_type>::max()));
}
}
}
// constructors:
inline SymmetricExtensionGraphNode::SymmetricExtensionGraphNode(const SymmetricExtensionGraphNode& segn) :
_symmetriesptr(segn._symmetriesptr),
_partial_triang(segn._partial_triang),
_critsimpidx_table(segn._critsimpidx_table) {
}
inline SymmetricExtensionGraphNode::SymmetricExtensionGraphNode(const SymmetricExtensionGraphNode&& segn) :
_symmetriesptr(segn._symmetriesptr),
_partial_triang(std::move(segn._partial_triang)),
_critsimpidx_table(std::move(segn._critsimpidx_table)) {
}
inline SymmetricExtensionGraphNode::SymmetricExtensionGraphNode(const SymmetricExtensionGraphNode& node,
const PartialTriang& partial_triang,
const critical_simpidx_table_type& critsimpidx_table) :
_symmetriesptr(node._symmetriesptr),
_partial_triang(partial_triang),
_critsimpidx_table(critsimpidx_table) {
}
inline SymmetricExtensionGraphNode::SymmetricExtensionGraphNode(const SymmetricExtensionGraphNode& node,
PartialTriang&& partial_triang,
critical_simpidx_table_type&& critsimpidx_table) :
_symmetriesptr(node._symmetriesptr),
_partial_triang(std::move(partial_triang)),
_critsimpidx_table(std::move(critsimpidx_table)) {
}
// destructor:
inline SymmetricExtensionGraphNode::~SymmetricExtensionGraphNode() {
#ifdef DEBUG
std::lock_guard<std::mutex> lock(IO_sync::mutex);
size_type max_bucket_size = 0;
for (size_type n = 0; n < _symmetry_images_by_element_cache.bucket_count(); ++n) {
if (max_bucket_size < _symmetry_images_by_element_cache.bucket_size(n)) {
max_bucket_size = _symmetry_images_by_element_cache.bucket_size(n);
}
}
std::cerr << "max bucket size of cache is " << max_bucket_size << std::endl;
#endif
}
// assignment:
inline SymmetricExtensionGraphNode& SymmetricExtensionGraphNode::operator=(const SymmetricExtensionGraphNode& segn) {
if (this == &segn) {
return *this;
}
_symmetriesptr = segn._symmetriesptr;
_partial_triang = segn._partial_triang;
_critsimpidx_table = segn._critsimpidx_table;
return *this;
}
inline SymmetricExtensionGraphNode& SymmetricExtensionGraphNode::operator=(const SymmetricExtensionGraphNode&& segn) {
if (this == &segn) {
return *this;
}
_symmetriesptr = segn._symmetriesptr;
_partial_triang = std::move(segn._partial_triang);
_critsimpidx_table = std::move(segn._critsimpidx_table);
return *this;
}
// stream input/output:
inline std::istream& SymmetricExtensionGraphNode::read(std::istream& ist) {
std::cerr << "SymmetricExtensionGraphNode::read(std::istream& ist):"
<< " reading in a pointer-based structure not supported - exiting."
<< std::endl;
exit(1);
return ist;
}
inline std::istream& operator>>(std::istream& ist, SymmetricExtensionGraphNode& ssgn) {
return ssgn.read(ist);
}
inline std::ostream& SymmetricExtensionGraphNode::write(std::ostream& ost) const {
const char colon = ':';
const char comma = ',';
const char lbracket = '[';
const char rbracket = ']';
ost << lbracket << _partial_triang << comma
<< _critsimpidx_table << rbracket;
return ost;
}
inline std::ostream& operator<<(std::ostream& ost, const SymmetricExtensionGraphNode& ssgn) {
return ssgn.write(ost);
}
}; // namespace topcom
#endif
// eof SymmetricExtensionGraphNode.hh
|