File: RegularityCheck.cc

package info (click to toggle)
topcom 1.1.2%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 31,784 kB
  • sloc: cpp: 37,616; sh: 4,262; makefile: 497; ansic: 49
file content (394 lines) | stat: -rw-r--r-- 14,308 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
////////////////////////////////////////////////////////////////////////////////
// 
// RegularityCheck.cc
//
//    produced: 2001/10/28 jr
// last change: 2001/10/28 jr
//
////////////////////////////////////////////////////////////////////////////////

#include <set>
#include <unordered_map>

#include "RegularityCheck.hh"

namespace topcom {

#ifdef REGULARITY_CACHE
  ConstraintCache  RegularityCheck::_cache;
#endif

  std::mutex RegularityCheck::_reg_mutex;
  size_type  RegularityCheck::cnt_calls = 0;


  // constructors:

  RegularityCheck::RegularityCheck(const PointConfiguration& points,
				   const Chirotope& chiro,
				   const Incidences& incidences, 
				   const SimplicialComplex& t) :
    _heights(points.no()),
    _coeffs(),
    _pointsptr(&points),
    _chiroptr (&chiro),
    _triangptr(&t),
    _incidencesptr(&incidences) {

    static const Vector zerovec(_chiroptr->no());
  
    // // keep a vector of matrices:
    // std::vector<StairCaseMatrix> matrices(_pointsptr->rank());

    parameter_type no   = _chiroptr->no();
    parameter_type rank = _chiroptr->rank();
    
    // we build the coefficient matrix from the chirotope and the triangulation t:
    SimplicialComplex intfacets;
    std::unordered_set<Simplex, Hash<Simplex> > unionsimps;

    // we ignore duplicates (disabled):
    size_type cnt_duplicates(0UL);

    // for all simplices in the triangulation t collect interior facets:
    for (SimplicialComplex::const_iterator iter = t.begin();
	 iter != t.end();
	 ++iter) {
      intfacets += _incidencesptr->intfacets(*iter);
    }
    size_type intfacets_cnt = intfacets.card();
  
    if (CommandlineOptions::debug()) {
      std::lock_guard<std::mutex> lock(IO_sync::mutex);
      std::cerr << intfacets_cnt << " interior facets in triangulation " << t << std::endl;
    }

    // prepare a matrix with a column for each interior facet
    // (some may be irrelevant, but at this point we do not care):
    _coeffs.resize(intfacets_cnt, zerovec);

    parameter_type col_cnt = 0;
  
    // for all interior facets ...
    for (SimplicialComplex::const_iterator iter = intfacets.begin();
	 iter != intfacets.end();
	 ++iter) {
      const Simplex intfacet(*iter);
      if (CommandlineOptions::debug()) {
	std::lock_guard<std::mutex> lock(IO_sync::mutex);
	std::cerr << "processing interior facet " << intfacet << " ..." << std::endl;
      }

      // find the two simplices in t (or fewer, if t is partial) containing intfacet:
      const SimplicialComplex simppair(t * _incidencesptr->intcofacets(intfacet));
      if (CommandlineOptions::debug()) {
	std::lock_guard<std::mutex> lock(IO_sync::mutex);
	std::cerr << "simplices in partial triangulation containing it are " << simppair << std::endl;
      }
      if (simppair.card() < 2) {
	// intfacet is not interior in t, thus no constraint:
	continue;
      }
      SimplicialComplex::const_iterator pairiter(simppair.begin());
      const Simplex simp1(*pairiter);
      if (CommandlineOptions::debug()) {
	std::lock_guard<std::mutex> lock(IO_sync::mutex);
	std::cerr << "simp1 = " << simp1 << std::endl;
      }
      ++pairiter;
      const Simplex simp2(*pairiter);
      if (CommandlineOptions::debug()) {
	std::lock_guard<std::mutex> lock(IO_sync::mutex);
	std::cerr << "simp2 = " << simp2 << std::endl;
      }
      const Simplex unionsimp(simp1 + simp2);
      if (CommandlineOptions::debug()) {
	std::lock_guard<std::mutex> lock(IO_sync::mutex);
	std::cerr << "simp1 union simp2 = " << unionsimp << std::endl;
      }
      if (unionsimps.find(unionsimp) != unionsimps.end()) {
	// constraints on identical rank + 1 subsets will be identical:
	continue;
      }
      unionsimps.insert(unionsimp);
#ifdef REGULARITY_CACHE
      const ConstraintCacheEntry constraint_config(unionsimp, intfacet);
#endif

      // grab reference to the right column in resulting matrix:
      Vector& new_col = _coeffs[col_cnt];
      ++col_cnt;

#ifdef REGULARITY_CACHE
      // check for cached values:
      {
	std::lock_guard<std::mutex> lock(_reg_mutex);     
	ConstraintCache::const_iterator find_iter = _cache.find(constraint_config);
	if (find_iter != _cache.end()) {
	  new_col = find_iter->second;
	  continue;
	}
      }
#endif
    
      // compute the index not in simp1:
      const Simplex simpdiff = simp2 - intfacet;
      if (CommandlineOptions::debug()) {
	std::lock_guard<std::mutex> lock(IO_sync::mutex);
	std::cerr << "vertex not in interior facet: " << simpdiff << std::endl;
      }
      if (simpdiff.empty()) {
	continue;
      }
      const parameter_type new_index = *simpdiff.begin();

      // simp1 is the calibration simplex --
      // if point new_index receives infinite height, then new_index is folded above aff(simp1):
      int calibrate = (*_chiroptr)(simp1);

      // determinants can be taken from the chirotope, since
      // RegularityCheck is only called when there are points available:
      new_col[new_index] = calibrate * _chiroptr->det(simp1);
      calibrate = -calibrate;

      // build a permutation out of simp1, i.e., at first, new_index is missing:
      Permutation simp1_perm(no, rank, simp1);

      // the remaining coefficients now receive alternating signs,
      // when the points i missing in new_index union simp1 minus i are traversed in increasing order;
      // the first missing element is the min of simp1:
      Simplex::const_iterator simp1_iter = simp1.begin();


      // count iterations:
      int cnt = 0;

      // overwrite first element of simp1_perm with new_index,
      // then the min of simp1 is missing:
      simp1_perm[cnt] = new_index;

      // iterate over further missing elements:
      while (true) {

	// fetch determinant from chirotope structure:
	new_col[*simp1_iter] = calibrate * _chiroptr->det(simp1_perm);
	calibrate = -calibrate;

	// check if we are done already:
	if (++cnt == rank) {
	  break;
	}
      
	// exchange the permutation element at cnt with the currently missing element:
	simp1_perm[cnt] = *simp1_iter;

	// increment iterator:
	++simp1_iter;
      }
#ifdef REGULARITY_CACHE
      {
	// cache the computational result:
	std::lock_guard<std::mutex> lock(_reg_mutex);     
	_cache[constraint_config] = new_col;
      }
#endif
    
      //////////////////////////////////////////////////////////////////////////////
      // obsolete section (matrix computations can now be avoided altogether):
      //////////////////////////////////////////////////////////////////////////////
      // // build the matrix of all points corresponding to the folding constraint
      // // for the internal ridge:
      // StairCaseMatrix basis_matrix;
      // const Matrix raw_basis_matrix(*_pointsptr, simp1);
      // basis_matrix.augment(raw_basis_matrix);
      // // for (basis_type::const_iterator basis_iter = simp1.begin();
      // // 	 basis_iter !=  simp1.end();
      // // 	 ++basis_iter) {
      // //   basis_matrix.augment((*_pointsptr)[*basis_iter]);
      // // }
      // const parameter_type new_index = *((simp2 - intfacet).begin());

      // // the orientation of simp1 is the calibration according to a point with
      // // infinite height:
      // Field det_basis = basis_matrix.det();
      // int calibrate(sign(det_basis));
      // new_col[new_index] = calibrate * det_basis;
    
      // calibrate = -calibrate;
    
      // // build the matrices with the point not in simp1 and the facets of simp1
      // // matrix[i] is built from (new_index union simp1 minus i):
      // int cnt(0);
      // for (int i = 0; i < matrices.size(); ++i) {
      //   matrices[i] = StairCaseMatrix((*_pointsptr)[new_index]);
      // }
      // for (Simplex::const_iterator simp_iter = simp1.begin();
      // 	 simp_iter != simp1.end();
      // 	 ++simp_iter) {
      //   for (int i = 0; i < cnt; ++i) {
      // 	matrices[i].augment((*_pointsptr)[*simp_iter]);
      //   }
      //   if (cnt + 1 < matrices.size()) {
      // 	matrices[cnt + 1].augment((*_pointsptr)[*simp_iter]);
      // 	for (int i = cnt + 2; i < matrices.size(); ++i) {
      // 	  matrices[i] = matrices[cnt + 1];
      // 	}
      //   }
      //   ++cnt;
      // }
      //
      // // collect the results:
      // cnt = 0;
      // for (Simplex::const_iterator simp_iter = simp1.begin();
      // 	 simp_iter != simp1.end();
      // 	 ++simp_iter) {    
      //   new_col.at(*simp_iter) = calibrate * matrices.at(cnt).det();
      //   calibrate = -calibrate;
      //   ++cnt;
      // }
      //////////////////////////////////////////////////////////////////////////////
      // end obsolete section
      //////////////////////////////////////////////////////////////////////////////
      
      //////////////////////////////////////////////////////////////////////////////
      // another obsolete section
      //////////////////////////////////////////////////////////////////////////////
      // // extract the matrix of simp1 and consider it to the right of column new_index:
      // Matrix after_gap_matrix(*_pointsptr, simp1);

      // // compute det with the help of a StairCaseMatrix:
      // StairCaseMatrix comp_matrix;
      // comp_matrix.augment(after_gap_matrix);
      // Field det_simp1 = comp_matrix.det();
      // int calibrate = sign(det_simp1);

      // // calibrate the sign of simp1 to "plus":
      // new_col[new_index] = calibrate * det_simp1;
      // calibrate = -calibrate;

      // // all other matrice start with column "new_index":
      // StairCaseMatrix before_gap_matrix((*_pointsptr)[new_index]);

      // // the matrices to the right of the missing column start with the calibration matrix:
      // IntegerSet ignored_cols;
      // parameter_type cnt = 0;
      // for (Simplex::const_iterator simp_iter = simp1.begin();
      // 	 simp_iter != simp1.end();
      // 	 ++simp_iter) {

      //   // ignore the next column from the matrix after the missing column:
      //   ignored_cols += cnt;
      //   ++cnt;
      
      //   // reuse the eliminations performed on the part left to the missing column:
      //   comp_matrix = before_gap_matrix;
      //   comp_matrix.augment(after_gap_matrix, ignored_cols);

      //   // complete and eliminate by the matrix right of the missing column and store its determinant:
      //   new_col[*simp_iter] = calibrate * comp_matrix.det();

      //   if (cnt == rank) {
      // 	break;
      //   }
      //   calibrate = -calibrate;
      
      //   // add the missing column to generate the matrix left of the next missing column and eliminate:
      //   before_gap_matrix.augment((*_pointsptr)[*simp_iter]);
      // }
      //////////////////////////////////////////////////////////////////////////////
      // end obsolete section
      //////////////////////////////////////////////////////////////////////////////
        
      if (CommandlineOptions::debug()) {

	// check the result:
	Matrix simp1_matrix(*_pointsptr, simp1);
	Field det_simp1 = simp1_matrix.det();

	Vector check_col(_chiroptr->no());
	int calibrate = sign(det_simp1);
	const parameter_type new_index = *(simp2 - intfacet).begin();
	check_col[new_index] = new_col[new_index];
	calibrate = -calibrate;
      
	basis_type basis(simp1);
	for (Simplex::const_iterator simp_iter = simp1.begin();
	     simp_iter != simp1.end();
	     ++simp_iter) {
	  const parameter_type idx(*simp_iter);
	  basis -= idx;
	  StairCaseMatrix basis_matrix;
	  basis_matrix.push_back((*_pointsptr)[new_index]);	  
	  for (basis_type::const_iterator basis_iter = basis.begin();
	       basis_iter !=  basis.end();
	       ++basis_iter) {
	    basis_matrix.augment((*_pointsptr)[*basis_iter]);
	  }
	  check_col[idx] = calibrate * basis_matrix.det();
	  calibrate = -calibrate;
	  basis += idx;
	}
      
	if (new_col != check_col) {
	  std::lock_guard<std::mutex> lock(IO_sync::mutex);
	  std::cerr << "RegularityCheck::RegularityCheck(...):"
		    << " constraint coefficient vector inconsistent with check:" << std::endl;
	  std::cerr << "simp1    : " << simp1 << std::endl;
	  std::cerr << "new_index: " << new_index << std::endl;
	  std::cerr << "fast     : " << new_col << std::endl;
	  std::cerr << "old      : " << check_col << std::endl;
	  std::cerr << "exiting" << std::endl;
	  exit(1);
	}
      }

      // redundancy (which can only occur in the case of coplanar points) need not be removed here;
      // redundancy removal is faster in the LP solver;
      // thus, simply push back the vector:
      // _coeffs.push_back(new_col);
    
      //////////////////////////////////////////////////////////////////////////////
      // another obsolete section
      //////////////////////////////////////////////////////////////////////////////
      // // finally, push_back the new column if it is new;
      // // it corresponds to 
      // // local regularity at an internal facet
      // // (we take a column for efficiency reasons,
      // // in the LP solver it will be a row, of course):
      // if (CommandlineOptions::debug()) {
      // std::lock_guard<std::mutex> lock(IO_sync::mutex);
      //   std::cerr << "checking novelty of new_col from interior facet "
      // 		<< intfacet << ": " << new_col << std::endl;
      // }
      // if (!new_col.is_zero() && (old_columns.find(new_col) == old_columns.end())) {
      //   _coeffs.push_back(new_col);
      //   old_columns.insert(new_col);
      // }
      // else {
      //   ++cnt_duplicates;
      // }
      //////////////////////////////////////////////////////////////////////////////
      // end obsolete section
      //////////////////////////////////////////////////////////////////////////////
    }

    // remove trailing zero-columns that were not needed:
    _coeffs.resize(col_cnt);

    if (CommandlineOptions::debug()) {
      std::lock_guard<std::mutex> lock(IO_sync::mutex);
      std::cerr << _coeffs.size() << " columns found" << std::endl;
      // std::cerr << cnt_duplicates << " duplicate columns found and ignored" << std::endl;
      std::cerr << "the coefficient matrix for regularity check:" << std::endl;
      if (_coeffs.coldim() == 0) {
	std::cerr << "no constraints." << std::endl;
      }
      else {
	_coeffs.transpose().pretty_print(std::cout);
      }
    }
  }

}; // namespace topcom

// eof RegularityCheck.cc