1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
////////////////////////////////////////////////////////////////////////////////
//
// CheckTriang.cc
//
// produced: 22 Nov 1999 jr
// last change: 22 Nov 1999 jr
//
////////////////////////////////////////////////////////////////////////////////
#include "LabelSet.hh"
#include "SimplicialComplex.hh"
#include "Permutation.hh"
#include "Chirotope.hh"
#include "CheckTriang.hh"
#include "CommandlineOptions.hh"
namespace topcom {
const bool CheckTriang::operator()() const {
const size_type no(_chiroptr->no());
const size_type rank(_chiroptr->rank());
const size_type dim(rank - 1);
// first check unique conver of a lexicographic extension:
if (!_check_extension_cover()) {
std::cerr << "Triangulation covers an interior extension twice." << std::endl;
return false;
}
// then check intersection of adjacent simplices:
size_type countdown(_triang.card());
if (_fine_only && (_triang.support() != LabelSet(0, no))) {
if (CommandlineOptions::verbose()) {
std::cerr << "Triangulation does not use all vertices." << std::endl;
}
return false;
}
// HashSet<Simplex> done_facets;
SimplicialComplex done_facets;
SimplicialComplex done_simplices;
for (SimplicialComplex::const_iterator iter = _triang.begin();
iter != _triang.end();
++iter) {
--countdown;
const Simplex simp(*iter);
if (simp.card() != rank) {
if (CommandlineOptions::verbose()) {
std::cerr << "Triangulation contains simplex with too few vertices." << std::endl;
}
return false;
}
if (done_simplices.contains(simp, rank)) {
continue;
}
done_simplices.insert(simp, rank);
for (symmetryptr_iterdata::const_iterator sym_iter = _triang_symmetryptrs.first.begin();
sym_iter != _triang_symmetryptrs.first.end();
++sym_iter) {
const Symmetry& g(**sym_iter);
done_simplices.insert(g.map(simp), rank);
}
Simplex facet(simp);
if (CommandlineOptions::verbose()) {
std::cerr << "... still facets of " << countdown << " simplices to check for correctness ..."
<< std::endl;
}
for (Simplex::const_iterator simp_iter = simp.begin();
simp_iter != simp.end();
++simp_iter) {
facet -= *simp_iter;
// if (done_facets.member(facet, dim)) {
if (done_facets.contains(facet, dim)) {
facet += *simp_iter;
continue;
}
if (!_check(facet)) {
return false;
}
done_facets.insert(facet, dim);
for (symmetryptr_iterdata::const_iterator sym_iter = _triang_symmetryptrs.first.begin();
sym_iter != _triang_symmetryptrs.first.end();
++sym_iter) {
const Symmetry& g(**sym_iter);
done_facets.insert(g.map(facet), dim);
}
facet += *simp_iter;
}
}
return true;
}
const bool CheckTriang::_check(const Simplex& facet) const {
// we know already that the link of facet contains only vertices:
Simplex facet_lk;
size_type facet_lk_card(0);
for (SimplicialComplex::const_iterator iter = _triang.begin();
iter != _triang.end();
++iter) {
const Simplex simp(*iter);
if (iter->superset(facet)) {
facet_lk += simp;
++facet_lk_card;
}
}
facet_lk -= facet;
if (facet_lk_card == 0) {
if (CommandlineOptions::verbose()) {
std::cerr << facet << " lies in no simplex." << std::endl;
}
return false;
}
Simplex::const_iterator iter(facet_lk.begin());
size_type i(*iter);
if (facet_lk.card() == 1) {
for (size_type j = 0; j < _chiroptr->no(); ++j) {
if (_opposite_sides(facet, i, j)) {
if (CommandlineOptions::verbose()) {
std::cerr << facet << " lies in exactly one simplex "
<< facet + i << std::endl
<< "but is not contained in a facet because "
<< j << " and " << i << " are on opposite sides." << std::endl;
}
return false;
}
}
return true;
}
else if (facet_lk_card == 2) {
size_type j(*(++iter));
if (!_opposite_sides(facet, i, j)) {
if (CommandlineOptions::verbose()) {
std::cerr << facet << " lies in two simplices "
<< facet + i << " and " << facet + j << std::endl
<< "but " << i << " and " << j
<< " do not lie on opposite sides." << std::endl;
}
return false;
}
return true;
}
else {
if (CommandlineOptions::verbose()) {
std::cerr << facet << " lies in more than two simplices." << std::endl;
}
return false;
}
}
const bool CheckTriang::_opposite_sides(const Simplex& facet,
const size_type i,
const size_type j) const {
if (facet.contains(i) || facet.contains(j)) {
return false;
}
Permutation perm_i(facet);
perm_i.push_back(i);
const int perm_i_sign(perm_i.sign());
const basis_type basis_i(perm_i);
const int basis_i_sign((*_chiroptr)(basis_i));
Permutation perm_j(facet);
perm_j.push_back(j);
const int perm_j_sign(perm_j.sign());
const basis_type basis_j(perm_j);
const int basis_j_sign((*_chiroptr)(basis_j));
return (perm_i_sign * basis_i_sign == -perm_j_sign * basis_j_sign);
}
const bool CheckTriang::_check_extension_cover() const {
size_type countdown(_triang.card());
if (_triang.empty()) {
return false;
}
SimplicialComplex::const_iterator iter(_triang.begin());
// this is the simplex we check for an interior lexicographic extension in
// the reference simplex; no other simplex may contain this extension in its
// convex hull; unfortunately, we cannot make use of the symmetries,
// but the check is fast, anyway:
const Simplex& reference_simp(*iter);
// form the permutation for the lexicographic extension:
const Permutation extension_lex_perm(_chiroptr->no(), _chiroptr->rank(), reference_simp);
while (++iter != _triang.end()) {
if (CommandlineOptions::verbose()) {
std::cerr << "... still " << --countdown << " simplices to check for unique extension cover ..."
<< std::endl;
}
const Simplex& checksimp(*iter);
Simplex facet(checksimp);
bool checksimp_okay = false;
// check all signs of facets of checksimp plus the extension point:
int pm((*_chiroptr)(checksimp));
if (_chiroptr->rank() % 2) {
pm = -pm;
}
for (Simplex::const_iterator simp_iter = checksimp.begin();
simp_iter != checksimp.end();
++simp_iter) {
facet -= *simp_iter;
if ((*_chiroptr)(facet, extension_lex_perm) == pm) {
// checksimp is okay:
checksimp_okay = true;
}
pm = -pm;
facet += *simp_iter;
}
if (!checksimp_okay) {
if (CommandlineOptions::verbose()) {
std::cerr << "lexicographic extension in " << reference_simp
<< " is also covered by " << checksimp
<< std::endl;
}
return false;
}
}
return true;
}
};
// eof CheckTriang.cc
|