File: SymmetricExtensionGraphNode.cc

package info (click to toggle)
topcom 1.1.2%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 31,784 kB
  • sloc: cpp: 37,616; sh: 4,262; makefile: 497; ansic: 49
file content (349 lines) | stat: -rw-r--r-- 14,706 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
//////////////////////////////////////////////////////////////////////////
//
// SymmetricExtensionGraphNode.cc
// produced: 03/12/2020 jr
// last change: 03/12/2020 jr
//
/////////////////////////////////////////////////////////////////////////

#include "SymmetricExtensionGraphNode.hh"

namespace topcom {

  // static members:
  symmetry_table_type              SymmetricExtensionGraphNode::_symmetry_images_by_element;
  thread_local symmetry_cache_type SymmetricExtensionGraphNode::_symmetry_images_by_element_cache;

  // construct the root node with a given root partial triangulation
  // using the symmetry group to initialize the critical element table:

  SymmetricExtensionGraphNode::SymmetricExtensionGraphNode(const SymmetryGroup*  sgptr,
							   const PartialTriang&& partial_triang) :
    _symmetriesptr(sgptr),
    _partial_triang(std::move(partial_triang)),
    _critsimpidx_table() {
    try {
      _critsimpidx_table.resize(_symmetriesptr->size(), std::numeric_limits<size_type>::max());
    }
    catch (...) {
      std::lock_guard<std::mutex> lock(IO_sync::mutex);
      std::cerr << "SymmetricExtensionGraphNode::SymmetricExtensionGraphNode(const SymmetryGroup&, const PartialTriang&): "
		<< "allocation of " << _symmetriesptr->size() << " int elements failed - exiting"
		<< std::endl;
      exit(1);
    }

    for (size_type symidx = 0; symidx < _symmetriesptr->size(); ++symidx) {
      const Symmetry& g = (*_symmetriesptr)[symidx];
      if (CommandlineOptions::simpidx_symmetries()) {
	_critsimpidx_table.push_back(critical_simpidx_lean(partial_triang, g, symidx));
      }
      else {
	_critsimpidx_table.push_back(critical_simpidx(partial_triang, g));
      }
    }
  }

  // functions:

  // the following is the core function:
  // it checks whether the child node of this node by extending subset by a new element
  // is lex-minimal; it is assumed that the new element is larger than all the existing
  // elements of subset; the critical element table is updated during the checking process
  // and returned if the extended subset is lex minimal:
  bool SymmetricExtensionGraphNode::child_is_lexmin(const Simplex&               new_simp,
						    critical_simpidx_table_type* new_critsimpidx_tableptr,
						    size_type*                   new_stabilizer_cardptr) const {
    const bool local_debug = false;

    *new_stabilizer_cardptr = 0UL;
    
    //////////////////////////////////////////////////////////////////////////////
    // disable the technique by answering the question without any smartness:
    //////////////////////////////////////////////////////////////////////////////
    // try {
    //   new_critsimpidx_tableptr->reserve(_critsimpidx_table.size());
    // }
    // catch (...) {
    //   std::cerr << "std::pair<bool, CriticalSimpidxTable> SymmetricExtensionGraphNode::child_is_lexmin(const Simplex&, CriticalSimpidxTable*) const: "
    // 	      << "allocation of " << _critsimpidx_table.size() << " int elements failed - exiting"
    // 	      << std::endl;
    //   exit(1);
    // }
    // for (size_type idx = 0; idx < _symmetriesptr->size(); ++idx) {
    //   // if ((*_symmetriesptr)[idx].lex_decreases((_partial_triang + new_simp).index_set(_partial_triang.rank()))) {
    //   // return false;
    //   // }
    //   new_critsimpidx_tableptr->push_back(std::numeric_limits<parameter_type>::max());
    // }
    // return true;
    //////////////////////////////////////////////////////////////////////////////
    // end disable
    //////////////////////////////////////////////////////////////////////////////

    if (local_debug || CommandlineOptions::debug()) {
      std::lock_guard<std::mutex> lock(IO_sync::mutex);
      std::cerr << "SymmetricExtensionGraphNode<cocircuits>::child_is_lexmin(const Simplex& new_simp):" << std::endl;
      std::cerr << "checking extension of partial triangulation " << _partial_triang << " by new_element " << new_simp << " ..." << std::endl;
    }
    // first, we compute the extended partial triangulation
    // (without all the expensive auxiliary data in PartialTriang):
    SimplicialComplex new_partial_triang(_partial_triang);
    new_partial_triang += new_simp;
    const parameter_type rank = new_partial_triang.rank();
    const size_type new_simpidx = SimplicialComplex::index_of_simplex(new_simp, rank);

    // generate a table to save the updated critical elements:
    try {
      // new_critsimpidx_tableptr->insert(new_critsimpidx_tableptr->begin(), _critsimpidx_table.begin(), _critsimpidx_table.end());
      new_critsimpidx_tableptr->reserve(_symmetriesptr->size());
    }
    catch (...) {
      std::cerr << "std::pair<bool, CriticalSimpidxTable> SymmetricExtensionGraphNode::child_is_lexmin(const Simplex&, CriticalSimpidxTable*) const: "
		<< "allocation of " << _critsimpidx_table.size() << " int elements failed - exiting"
		<< std::endl;
      exit(1);
    }
    const std::vector<size_type>& img_of_elm_vec = _symmetry_images_by_element[new_simpidx];
    for (size_type symidx = 0; symidx < _symmetriesptr->size(); ++symidx) {
      const Symmetry& g = (*_symmetriesptr)[symidx];
      const size_type& critsimpidx = _critsimpidx_table[symidx];

      // here we take advantage of the special representation of the group:
      // no simplex has to be mapped, just read the image index from the array
      // representing the permutation on simplex indices:
      const size_type& new_simpidx_image = img_of_elm_vec[symidx];
      // const parameter_type& new_simpidx_image = g[new_simpidx];

      if (critsimpidx == std::numeric_limits<size_type>::max()) {

	// in case g(S) = S, the new critical element is the new element itself:
	if (new_simpidx_image < new_simpidx) {
	  return false;
	}
	if (new_simpidx_image > new_simpidx) {
	  // (*new_critsimpidx_tableptr)[symidx] = new_simpidx;
	  new_critsimpidx_tableptr->emplace_back(new_simpidx);
	  continue;
	}

	// the current symmetry is in the stabilizer of the new partial triangulation,
	// which therefore is not lex-decreased:
	new_critsimpidx_tableptr->emplace_back(std::numeric_limits<size_type>::max());
	++(*new_stabilizer_cardptr);
	continue;
      }

      // the order on simplices in the IndexTable has to be used:
      if (new_simpidx_image == critsimpidx) {

	// this case is the complicated case:
	// the image g(new_simpidx) of the new element under the symmetry g
	// is equal to the critical simplex index,
	// thus, there is a new critical simplex index for g w.r.t. partial_triang union new_simp,
	// and we have to compute the new critical element from scratch:
	const size_type& new_critsimpidx = critical_simpidx(new_partial_triang, g);

	if (new_critsimpidx == std::numeric_limits<size_type>::max()) {

	  // in this case, the new partial triangulation is fixed, thus it is lex minimal,
	  // and the critical-element table needs an update:
	  new_critsimpidx_tableptr->emplace_back(std::numeric_limits<size_type>::max());
	  ++(*new_stabilizer_cardptr);
	  continue;
	}
	else {
	  if (new_partial_triang.index_set_pure().contains(new_critsimpidx)) {
	    
	    // in this case, the critical simplex is in the new partial triang,
	    // thus it is lex minimal with new critical simplex,
	    // and the critical-element table needs an update:
	    new_critsimpidx_tableptr->emplace_back(new_critsimpidx);
	    continue;
	  }
	  
	  // in this case, neither the new subset is fixed nor the new critical element is
	  // in the image of the new subset, thus the new subset is not lex-minimal:
	  return false;
	}
      }
      if (new_simpidx_image > critsimpidx) {

	// the image g(new_simpidx) of the new simplex index under the symmetry g
	// is strictly larger than the critical simplex index,
	// thus, partial_triang union new_simp is lex-smaller than g(partial_triang union new_simp),
	// the critical simplex remains unchanged,
	// and we continue with the next symmetry:
	new_critsimpidx_tableptr->emplace_back(critsimpidx);
	continue;
      }

      // the image g(new_simpidx) of the new simplex index under the symmetry g
      // is strictly smaller than the critical simplex index,
      // thus, g(partial_triang union new_simp) is lex-smaller than partial_triang union new_simp,
      // we do not need updated critical simplex indices,
      // we return false, and the table built so far is irrelevant:
      
      return false;
    }

    // we have not found any colex-increasing symmetry;
    // in that case, all symmetries have been scanned,
    // and therefore all critical elements have been updated:
    return true;
  }
  bool SymmetricExtensionGraphNode::child_is_lexmin_lean(const Simplex&               new_simp,
							 critical_simpidx_table_type* new_critsimpidx_tableptr,
							 size_type*                   new_stabilizer_cardptr) const {
    const bool local_debug = false;
    *new_stabilizer_cardptr = 0UL;

    if (local_debug || CommandlineOptions::debug()) {
      std::lock_guard<std::mutex> lock(IO_sync::mutex);
      std::cerr << "SymmetricExtensionGraphNode<cocircuits>::child_is_lexmin(const Simplex& new_simp):" << std::endl;
      std::cerr << "checking extension of partial triangulation " << _partial_triang << " by new_element " << new_simp << " ..." << std::endl;
    }
    
    // first, we compute the extended partial triangulation
    // (without all the expensive auxiliary data in PartialTriang):
    const parameter_type rank = _partial_triang.rank();
    const SimplicialComplex new_partial_triang(_partial_triang + new_simp);
    const size_type new_simpidx = SimplicialComplex::index_of_simplex(new_simp, rank);

    // generate a table to save the updated critical elements:
    try {
      new_critsimpidx_tableptr->reserve(_symmetriesptr->size());
    }
    catch (...) {
      std::lock_guard<std::mutex> lock(IO_sync::mutex);
      std::cerr << "std::pair<bool, CriticalSimpidxTable> SymmetricExtensionGraphNode::child_is_lexmin(const Simplex&, CriticalSimpidxTable*) const: "
		<< "allocation of " << _critsimpidx_table.size() << " int elements failed - exiting"
		<< std::endl;
      exit(1);
    }

    // in the lean version, the symmetries in the node are the original symmetries on points:
    for (size_type symidx = 0; symidx < _symmetriesptr->size(); ++symidx) {
      const Symmetry& g = (*_symmetriesptr)[symidx];
      const size_type critsimpidx = _critsimpidx_table[symidx];
      size_type new_simpidx_image;
      if (CommandlineOptions::memopt()) {
	if (CommandlineOptions::localcache() == 0) {

	  // choose this branch if cache administration does not pay off:
	  new_simpidx_image = SimplicialComplex::index_of_simplex(g.map(new_simp), rank);
	}
	else {
	  const IndexPair index_pair(new_simpidx, symidx);
	  const size_type hash_value = Hash<IndexPair>()(index_pair);
	  const size_type cache_idx  = hash_value % _symmetry_images_by_element_cache.size();
	  symmetry_cache_entry_type& cache_entry_reference = _symmetry_images_by_element_cache[cache_idx];
	  if (cache_entry_reference.first == index_pair) {
	    new_simpidx_image = cache_entry_reference.second;
	  }
	  else {
	    new_simpidx_image = SimplicialComplex::index_of_simplex(g.map(new_simp), rank);
	    cache_entry_reference = std::move(symmetry_cache_entry_type(index_pair, new_simpidx_image));
	  }
	}
      }
      else {
	if (_symmetry_images_by_element[new_simpidx][symidx] == std::numeric_limits<size_type>::max()) {
	  
	  // bring requested value into the table:
	  _symmetry_images_by_element[new_simpidx][symidx] = SimplicialComplex::index_of_simplex(g.map(new_simp), rank);
	}

	// retrieve requested value from table:
	new_simpidx_image = _symmetry_images_by_element[new_simpidx][symidx];
      }
      if (critsimpidx == std::numeric_limits<size_type>::max()) {
	if (new_simpidx_image < new_simpidx) {
	  return false;
	}
	if (new_simpidx_image > new_simpidx) {
	  new_critsimpidx_tableptr->emplace_back(new_simpidx);
	  continue;
	}
	new_critsimpidx_tableptr->emplace_back(std::numeric_limits<size_type>::max());
	++(*new_stabilizer_cardptr);
	continue;
      }
      if (new_simpidx_image == critsimpidx) {
	const size_type new_critsimpidx = critical_simpidx_lean(new_partial_triang, g, symidx);
	if (new_critsimpidx == std::numeric_limits<size_type>::max()) {
	  new_critsimpidx_tableptr->emplace_back(std::numeric_limits<size_type>::max());
	  ++(*new_stabilizer_cardptr);
	  continue;
	}
	else {
	  if (new_partial_triang.index_set_pure().contains(new_critsimpidx)) {
	    new_critsimpidx_tableptr->emplace_back(new_critsimpidx);
	    continue;
	  }
	  return false;
	}
      }
      if (new_simpidx_image > critsimpidx) {
	new_critsimpidx_tableptr->emplace_back(critsimpidx);
	continue;
      }
      return false;
    }
    return true;
  }


  // auxiliary function to compute critical element from scratch for a symmetry:
  size_type SymmetricExtensionGraphNode::critical_simpidx(const SimplicialComplex& sc,
							  const Symmetry& g) const {
    const SimplicialComplex::IndexSet symdiff_idxset(sc.index_set_pure() ^ g.map(sc.index_set_pure()));
    if (symdiff_idxset.empty()) {
      return std::numeric_limits<size_type>::max(); // an encoding for infinity
    }
    else {
      return symdiff_idxset.min_elem();
    }
  }

  // auxiliary function to compute critical element from scratch for a symmetry:
  size_type SymmetricExtensionGraphNode::critical_simpidx_lean(const SimplicialComplex& sc,
							       const Symmetry& g,
							       const size_type symidx) const {
    // return (sc.index_set_pure() ^ g.map(sc).index_set_pure()).min_elem();

    if (CommandlineOptions::memopt()) {
      const SimplicialComplex::IndexSet symdiff_idxset(sc.index_set_pure() ^ g.map(sc).index_set_pure());
      if (symdiff_idxset.empty()) {
	return std::numeric_limits<size_type>::max(); // an encoding for infinity
      }
      else {
	return symdiff_idxset.min_elem();
      }
    }
    else {

      // use the cache to speed-up the map function:
      SimplicialComplex::IndexSet sc_image_indexset;
      for (SimplicialComplex::IndexSet::const_iterator isiter = sc.index_set_pure().begin();
	   isiter != sc.index_set_pure().end();
	   ++isiter) {
	
	// we know at this point that the images of
	// simplex indices for all simplices in the partial triangulation
	// have been cached already:
	sc_image_indexset += _symmetry_images_by_element[*isiter][symidx];
      }
      const SimplicialComplex::IndexSet symdiff_idxset(sc_image_indexset ^ sc.index_set_pure());
      if (symdiff_idxset.empty()) {
	return std::numeric_limits<size_type>::max();
      }
      else {
	return symdiff_idxset.min_elem();
      }
    }
  }

}; // namespace topcom

// eof SymmetricExtensionGraphNode.cc