File: SymmetricSubsetGraphNode.hh

package info (click to toggle)
topcom 1.1.2%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 31,784 kB
  • sloc: cpp: 37,616; sh: 4,262; makefile: 497; ansic: 49
file content (747 lines) | stat: -rw-r--r-- 31,359 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
//////////////////////////////////////////////////////////////////////////
// SymmetricSubsetGraphNode.hh
// produced: 27/11/2020 jr
// last change: 27/11/2020 jr
/////////////////////////////////////////////////////////////////////////
#ifndef SYMMETRICSUBSETGRAPHNODE_HH
#define SYMMETRICSUBSETGRAPHNODE_HH

#include <iostream>
#include <iomanip>
#include <vector>

#include "ContainerIO.hh"
#include "LabelSet.hh"
#include "Symmetry.hh"
#include "StrictStairCaseMatrix.hh"
#include "StrictStairCaseMatrixTrans.hh"

namespace topcom {

  // we make the enumaration dependent on the matrix class used for elimination
  // since circuit enumeration needs a more powerful class than cocircuit enumeration:
  
  typedef enum { circuits, cocircuits, cocircuits_independent } ssg_mode_type;
  template <ssg_mode_type mode>
  class NodeMatrixClass;
  
  // for circuits we need a more capable matrix class:
  template <>
  class NodeMatrixClass<circuits> : public StrictStairCaseMatrixTrans {};
  
  // for cocircuits based on the enumeration of independent hyperplanar subsets
  // we need a simpler matrix class:
  template <>
  class NodeMatrixClass<cocircuits_independent> : public StrictStairCaseMatrix {};
  
  // for cocircuits based on the enumeration of the complete zero-sets
  // the simpler class suffices as well:
  template <>
  class NodeMatrixClass<cocircuits> : public StrictStairCaseMatrix {};
  
  // the following type can store for each symmetry g
  // the maximal value of the symmetric difference of a subset S and its image g(S)
  // where the convention is that the critical element is std::numeric_limits<parameter_type>::max() if S = g(S)
  // (this value decides the colexicographic comparison);
  // in order to save memory, we store a vector of critical elements
  // where critical_element[idx] is the critical element for symmetries[idx]:
  
  typedef std::vector<parameter_type> critical_element_table_type;

  // for each element i, store the index set of symmetries with critical element i
  // with the convention that the stabilizer of S is at index n:
  typedef std::vector<LabelSet> critical_element_classification_type;

  // to offer the choice what whether to use check by iteration or by sets
  // we need to hand over a pair of the data structures:
  typedef std::pair<critical_element_table_type, critical_element_classification_type> critical_element_data_type;
  
  template <ssg_mode_type mode>
  class SymmetricSubsetGraphNode {
  public:
    typedef NodeMatrixClass<mode> matrix_type;
  private:
    // the following leaner global data structure is used in the iterative symmetry check
    // for reasons of a better cache-coherence:
    static std::vector<std::vector<parameter_type> > _symmetry_images_by_element;

    // the following more excessive global data structures are for the set-based symmetry check:
    static std::vector<LabelSet> _increasing_symidxsets;
    static std::vector<LabelSet> _decreasing_symidxsets;
    static std::vector<LabelSet> _stabilizing_symidxsets;

    // the following specifies a matrix of LabelSets with
    // the entry at (i, j) contains the index set of all
    // permutations mapping i to [at least] j:
    static std::vector<std::vector<LabelSet> > _elm_to_img_classification;
    static std::vector<std::vector<LabelSet> > _elm_to_at_least_img_classification;
  private:
    const SymmetryGroup*                 _symmetriesptr;
    LabelSet                             _subset;
    matrix_type                          _matrix;
    critical_element_table_type          _critelem_table;
    critical_element_classification_type _critelem_classification;
    size_type                            _stabilizer_card;
  private:
    SymmetricSubsetGraphNode();
  public:
    // constructors:
    inline SymmetricSubsetGraphNode(const SymmetricSubsetGraphNode&);
    inline SymmetricSubsetGraphNode(SymmetricSubsetGraphNode&&);
    inline SymmetricSubsetGraphNode(const SymmetryGroup*,
				    const LabelSet&,
				    const matrix_type&,
				    const critical_element_data_type&,
				    const size_type);
    inline SymmetricSubsetGraphNode(const SymmetryGroup*,
				    LabelSet&&,
				    matrix_type&&,
				    critical_element_data_type&&,
				    const size_type);
    
    // construct the root node with empty subset and empty matrix
    // using the symmetry group to initialize the critical element table:
    SymmetricSubsetGraphNode(const SymmetryGroup*);
    
    // compute a node from scratch for double-check purposes:
    SymmetricSubsetGraphNode(const SymmetryGroup*,
			     const LabelSet&,
			     const matrix_type&);
    
    // destructor:
    inline ~SymmetricSubsetGraphNode();
    
    // assignment:
    inline SymmetricSubsetGraphNode& operator=(const SymmetricSubsetGraphNode&);
    inline SymmetricSubsetGraphNode& operator=(SymmetricSubsetGraphNode&&);
    
    // functions:
    
    // the following is the core function:
    // it checks whether the child node of this node by extending subset by a new element
    // is colex-maximal; it is assumed that the new element is smaller than all the existing
    // elements of subset; the critical element table is updated during the checking process
    // in the internal computation buffer _next_critelem_table:
    inline bool child_is_colexmax(const parameter_type, critical_element_data_type*, size_type*) const;
    bool child_is_colexmax_by_iter(const parameter_type, critical_element_table_type*, size_type*) const;
    bool child_is_colexmax_by_sets(const parameter_type, critical_element_classification_type*, size_type*) const;
    
    // auxiliary function to compute critical element from scratch for a symmetry:
    parameter_type critical_element(const LabelSet&, const Symmetry&) const;
    
    // accessors:
    inline const LabelSet&                    subset()                const { return _subset; }
    inline const matrix_type&                 matrix()                const { return _matrix; }
    inline const critical_element_table_type& critelem_table()        const { return _critelem_table; }
    inline const size_type                    stabilizer_card()       const { return _stabilizer_card; }
    
    // stream input/output:
    inline std::istream& read(std::istream&);
    inline std::ostream& write(std::ostream&) const;
  };

  // static members:
  template <ssg_mode_type mode>
  std::vector<std::vector<parameter_type> > SymmetricSubsetGraphNode<mode>::_symmetry_images_by_element;

  template <ssg_mode_type mode>
  std::vector<LabelSet> SymmetricSubsetGraphNode<mode>::_increasing_symidxsets;

  template <ssg_mode_type mode>
  std::vector<LabelSet> SymmetricSubsetGraphNode<mode>::_decreasing_symidxsets;

  template <ssg_mode_type mode>
  std::vector<LabelSet> SymmetricSubsetGraphNode<mode>::_stabilizing_symidxsets;

  template <ssg_mode_type mode>
  std::vector<std::vector<LabelSet> > SymmetricSubsetGraphNode<mode>::_elm_to_img_classification;

  template <ssg_mode_type mode>
  std::vector<std::vector<LabelSet> > SymmetricSubsetGraphNode<mode>::_elm_to_at_least_img_classification;

  // constructors:
  template <ssg_mode_type mode>
  inline SymmetricSubsetGraphNode<mode>::SymmetricSubsetGraphNode(const SymmetricSubsetGraphNode<mode>& ssgn) :
    _symmetriesptr(ssgn._symmetriesptr),
    _subset(ssgn._subset),
    _matrix(ssgn._matrix),
    _critelem_table(ssgn._critelem_table),
    _critelem_classification(ssgn._critelem_classification),
    _stabilizer_card(ssgn._stabilizer_card) {
  }

  template <ssg_mode_type mode>
  inline SymmetricSubsetGraphNode<mode>::SymmetricSubsetGraphNode(SymmetricSubsetGraphNode<mode>&& ssgn) :
    _symmetriesptr(ssgn._symmetriesptr),
    _subset(std::move(ssgn._subset)),
    _matrix(std::move(ssgn._matrix)),
    _critelem_table(std::move(ssgn._critelem_table)),
    _critelem_classification(std::move(ssgn._critelem_classification)),
    _stabilizer_card(ssgn._stabilizer_card) {
  }

  template <ssg_mode_type mode>
  inline SymmetricSubsetGraphNode<mode>::SymmetricSubsetGraphNode(const SymmetryGroup*                   symmetriesptr,
								  const LabelSet&                        subset,
								  const matrix_type&                     matrix,
								  const critical_element_data_type&      critelem_data,
								  const size_type                        stabilizer_card) :
    _symmetriesptr(symmetriesptr),
    _subset(subset),
    _matrix(matrix),
    _critelem_table(critelem_data.first),
    _critelem_classification(critelem_data.second),
    _stabilizer_card(stabilizer_card) {
  }

  template <ssg_mode_type mode>
  inline SymmetricSubsetGraphNode<mode>::SymmetricSubsetGraphNode(const SymmetryGroup*                   symmetriesptr,
								  LabelSet&&                             subset,
								  matrix_type&&                          matrix,
								  critical_element_data_type&&           critelem_data,
								  const size_type                        stabilizer_card) :
    _symmetriesptr(symmetriesptr),
    _subset(std::move(subset)),
    _matrix(std::move(matrix)),
    _critelem_table(std::move(critelem_data.first)),
    _critelem_classification(std::move(critelem_data.second)),
    _stabilizer_card(stabilizer_card) {
  }

  // construct the root node with empty subset and empty matrix
  // using the symmetry group to initialize the critical element table:
  template <ssg_mode_type mode>
  SymmetricSubsetGraphNode<mode>::SymmetricSubsetGraphNode(const SymmetryGroup* sgptr) :
    _symmetriesptr(sgptr),
    _subset(),
    _matrix(),
    _critelem_table(_symmetriesptr->size(), std::numeric_limits<parameter_type>::max()),
    _critelem_classification(),
    _stabilizer_card(sgptr->size()) {
    
    if (!(CommandlineOptions::use_classified_symmetries() || CommandlineOptions::use_switch_tables() || CommandlineOptions::use_naive_symmetries())) {
      if (CommandlineOptions::memopt()) {
	try {
	  _symmetry_images_by_element.resize(_symmetriesptr->n(), std::vector<parameter_type>(_symmetriesptr->size()));
	}
	catch (...) {
	  std::cerr << "SymmetricSubsetGraphNode<mode>::SymmetricSubsetGraphNode(const SymmetryGroup*): "
		    << "allocation of " << _symmetriesptr->size() * _symmetriesptr->n() << " int elements failed - exiting"
		    << std::endl;
	  exit(1);
	}
	for (size_type symidx = 0; symidx < _symmetriesptr->size(); ++symidx) {
	  for (parameter_type elm = 0; elm < _symmetriesptr->n(); ++elm) {
	    _symmetry_images_by_element.at(elm).at(symidx) = _symmetriesptr->at(symidx).at(elm);
	  }
	}
      }
      else {

	// init the static vector of symmetry indices that strictly increase the respective elements:
	try {
	  _increasing_symidxsets.resize(_symmetriesptr->n(), LabelSet());
	}
	catch (...) {
	  std::cerr << "SymmetricSubsetGraphNode<mode>::SymmetricSubsetGraphNode(const SymmetryGroup*, const LabelSet&, const matrix_type&): "
		    << "allocation of " << _symmetriesptr->n() << " LabelSet elements failed - exiting."
		    << std::endl;
	  exit(1);
	}

	// init the static vector of symmetry indices that strictly decrease the respective elements:
	try {
	  _decreasing_symidxsets.resize(_symmetriesptr->n(), LabelSet());
	}
	catch (...) {
	  std::cerr << "SymmetricSubsetGraphNode<mode>::SymmetricSubsetGraphNode(const SymmetryGroup*, const LabelSet&, const matrix_type&): "
		    << "allocation of " << _symmetriesptr->n() << " LabelSet elements failed - exiting."
		    << std::endl;
	  exit(1);
	}

	// init the static vector of symmetry indices that strictly tabilize the respective elements:
	try {
	  _stabilizing_symidxsets.resize(_symmetriesptr->n(), LabelSet());
	}
	catch (...) {
	  std::cerr << "SymmetricSubsetGraphNode<mode>::SymmetricSubsetGraphNode(const SymmetryGroup*, const LabelSet&, const matrix_type&): "
		    << "allocation of " << _symmetriesptr->n() << " LabelSet elements failed - exiting."
		    << std::endl;
	  exit(1);
	}

	// build the increasing/decreasing/stabilizing index sets:
	for (parameter_type elem = 0; elem < _symmetriesptr->n(); ++elem) {
	  for (size_type symidx = 0; symidx < _symmetriesptr->size(); ++symidx) {
	    const Symmetry& g(_symmetriesptr->at(symidx));
	    if (g[elem] < elem) {
	      _decreasing_symidxsets.at(elem) += symidx;
	    }
	    else if (g[elem] > elem) {
	      _increasing_symidxsets.at(elem) += symidx;
	    }
	    else {
	      _stabilizing_symidxsets.at(elem) += symidx;
	    }
	  }
	}

	// build the static matrix of symmetry indices mapping i to at least j > i:
	try {
	  _elm_to_img_classification.resize(_symmetriesptr->n(), std::vector<LabelSet>(_symmetriesptr->n(), LabelSet()));
	  _elm_to_at_least_img_classification.resize(_symmetriesptr->n(), std::vector<LabelSet>(_symmetriesptr->n(), LabelSet()));
	}
	catch (...) {
	  std::cerr << "SymmetricSubsetGraphNode<mode>::SymmetricSubsetGraphNode(const SymmetryGroup*, const LabelSet&, const matrix_type&): "
		    << "allocation of " << _symmetriesptr->n() * _symmetriesptr->n() << " LabelSet elements failed - exiting."
		    << std::endl;
	  exit(1);
	}
	for (parameter_type elm = 0; elm < _symmetriesptr->n(); ++elm) {
	  for (LabelSet::const_iterator inciter = _increasing_symidxsets.at(elm).begin();
	       inciter != _increasing_symidxsets.at(elm).end();
	       ++inciter) {
	    const size_type symidx(*inciter);
	
	    // first, we collect the indices of symmetries mapping elm to img in index set at position (elm, img):
	    const Symmetry& g(_symmetriesptr->at(symidx));
	    _elm_to_img_classification.at(elm).at(g(elm)) += symidx;
	    _elm_to_at_least_img_classification.at(elm).at(g(elm)) += symidx;
	  }
	}
	for (parameter_type elm = 0; elm < _symmetriesptr->n(); ++elm) {
	  for (parameter_type img = _symmetriesptr->n() - 2; img > elm; --img) {

	    // next, we backwardly add at position (elm, img) all indices of symmetries mapping elm to img+1,
	    // so that finally at position (elm, img) we have all indices of symmetries mapping elm to at least img:
	    _elm_to_at_least_img_classification.at(elm).at(img) += _elm_to_at_least_img_classification.at(elm).at(img + 1);
	  }
	}

	// next, build the critical-elements classification vector for the empty set:
	try {
	  _critelem_classification.resize(_symmetriesptr->n() + 1, LabelSet());
	}
	catch (...) {
	  std::cerr << "SymmetricSubsetGraphNode<mode>::SymmetricSubsetGraphNode(const SymmetryGroup*, const LabelSet&, const matrix_type&): "
		    << "allocation of " << _symmetriesptr->n() + 1 << " LabelSet elements failed - exiting."
		    << std::endl;
	  exit(1);
	}
    
	// all symmetries stabilize the empty set:
	_critelem_classification.at(sgptr->n()) = LabelSet(0, sgptr->size());
      }
    }
  }

  template <ssg_mode_type mode>
  SymmetricSubsetGraphNode<mode>::SymmetricSubsetGraphNode(const SymmetryGroup* sgptr,
							   const LabelSet& subset,
							   const matrix_type& matrix) :
    _symmetriesptr(sgptr),
    _subset(subset),
    _matrix(matrix),
    _critelem_table(),
    _critelem_classification(),
    _stabilizer_card(0) {
    if (CommandlineOptions::memopt()) {
      try {
	_critelem_table.reserve(sgptr->size());
      }
      catch (...) {
	std::cerr << "SymmetricSubsetGraphNode<mode>::SymmetricSubsetGraphNode(const SymmetryGroup*, const LabelSet&, const matrix_type&): "
		  << "allocation of " << sgptr->size() << " int elements failed - exiting."
		  << std::endl;
	exit(1);
      }
      for (SymmetryGroup::const_iterator iter = sgptr->begin();
	   iter != sgptr->end();
	   ++iter) {
	const Symmetry& g(*iter);
	_critelem_table.push_back(critical_element(subset, g));
      }
    }
    else {
      try {
	_critelem_classification.resize(sgptr->n() + 1, LabelSet());
      }
      catch (...) {
	std::cerr << "SymmetricSubsetGraphNode<mode>::SymmetricSubsetGraphNode(const SymmetryGroup*, const LabelSet&, const matrix_type&): "
		  << "allocation of " << sgptr->n() + 1 << " int elements failed - exiting."
		  << std::endl;
	exit(1);
      }
      for (size_type symidx = 0; symidx < _symmetriesptr->size(); ++symidx) {
	const Symmetry& g(_symmetriesptr->at(symidx));
	parameter_type critelem = critical_element(subset, g);
	if (critelem == std::numeric_limits<parameter_type>::max()) {
	  critelem = sgptr->n();
	  ++_stabilizer_card;
	}
	_critelem_classification.at(critelem) += symidx;
      }
    }
  }

  // destructor:
  template <ssg_mode_type mode>
  inline SymmetricSubsetGraphNode<mode>::~SymmetricSubsetGraphNode() {}

  // assignment:
  template <ssg_mode_type mode>
  inline SymmetricSubsetGraphNode<mode>& SymmetricSubsetGraphNode<mode>::operator=(const SymmetricSubsetGraphNode<mode>& ssgn) {
    if (this == &ssgn) {
      return *this;
    }
    _symmetriesptr           = ssgn._symmetriesptr;
    _subset                  = ssgn._subset;
    _matrix                  = ssgn._matrix;
    _critelem_table          = ssgn._critelem_table;  
    _critelem_classification = ssgn._critelem_classification;  
    _stabilizer_card         = ssgn._stabilizer_card;  
    return *this;
  }

  template <ssg_mode_type mode>
  inline SymmetricSubsetGraphNode<mode>& SymmetricSubsetGraphNode<mode>::operator=(SymmetricSubsetGraphNode<mode>&& ssgn) {
    if (this == &ssgn) {
      return *this;
    }
    _symmetriesptr           = ssgn._symmetriesptr;
    _subset                  = std::move(ssgn._subset);
    _matrix                  = std::move(ssgn._matrix);
    _critelem_table          = std::move(ssgn._critelem_table);
    _critelem_classification = std::move(ssgn._critelem_classification);  
    _stabilizer_card         = ssgn._stabilizer_card;  
    return *this;
  }

  // functions:

  // the following is the core function:
  // it checks whether the child node of this node by extending subset by a new element
  // is colex-maximal; it is assumed that the new element is smaller than all the existing
  // elements of subset; the critical element table is updated during the checking process
  // and returned if the extended subset is colex maximal:

  template <ssg_mode_type mode>
  bool SymmetricSubsetGraphNode<mode>::child_is_colexmax(const parameter_type new_elem,
							 critical_element_data_type* new_critelem_dataptr,
							 size_type* stabilizer_cardptr) const {
    if (CommandlineOptions::memopt()) {
      return child_is_colexmax_by_iter(new_elem, &new_critelem_dataptr->first, stabilizer_cardptr);
    }
    else {
      return child_is_colexmax_by_sets(new_elem, &new_critelem_dataptr->second, stabilizer_cardptr);
    }
  }
  
  template <ssg_mode_type mode>
  bool SymmetricSubsetGraphNode<mode>::child_is_colexmax_by_iter(const parameter_type new_elem,
								 critical_element_table_type* new_critelem_tableptr,
								 size_type* stabilizer_cardptr) const {
    const bool local_debug = false;
  
    if (local_debug || CommandlineOptions::debug()) {
      std::lock_guard<std::mutex> lock(IO_sync::mutex);
      std::cerr << "SymmetricSubsetGraphNode<mode>::child_is_colexmax(const parameter_type new_elem):" << std::endl;
      std::cerr << "checking extension of subset " << _subset << " by new_element " << new_elem << " ..." << std::endl;
    }
    // first, we compute the extended subset:
    LabelSet new_subset(_subset);

    // generate a table to save the updated critical elements:
    new_subset += new_elem;
    if (local_debug || CommandlineOptions::debug()) {
      if (_critelem_table.size() != _symmetriesptr->size()) {
	std::lock_guard<std::mutex> lock(IO_sync::mutex);
	std::cerr << "SymmetricSubsetGraphNode<mode>::child_is_colexmax_by_iter(const parameter_type, critical_element_table_type*) const: "
		  << "|symmetry group| != |critical elements table| - exiting." << std::endl;
	exit(1);
      }
    }
    try {
      new_critelem_tableptr->reserve(_critelem_table.size());
    }
    catch (...) {
      std::cerr << "SymmetricSubsetGraphNode<mode>::child_is_colexmax(const parameter_type, critical_element_table_type*) const: "
		<< "allocation of " << _critelem_table.size() << " int elements failed - exiting."
		<< std::endl;
      exit(1);
    }
    const std::vector<parameter_type>& img_of_elm_vec = _symmetry_images_by_element.at(new_elem);
    *stabilizer_cardptr = 0;
    for (size_type idx = 0; idx < _symmetriesptr->size(); ++idx) {
      const Symmetry& g = (*_symmetriesptr).at(idx);
      const parameter_type& image_of_new_elem = img_of_elm_vec.at(idx);

      // the critical element equals new_elem in case g(S) = S,
      // which is indicated by a critical element of std::numeric_limits<parameter_type>::max() for g w.r.t. S:
      const parameter_type& critelem = _critelem_table.at(idx);
      
      // remove debug check because this is a very tight loop:
      // if (local_debug || CommandlineOptions::debug()) {
      // 	std::lock_guard<std::mutex> lock(IO_sync::mutex);
      // 	std::cerr << "... critical element for " << g << " with respect to " << _subset
      // 		  << " is " << critelem << std::endl;
      // 	std::cerr << _subset << " -> g -> " << g.map(_subset) << std::endl;
      // }
      // if (local_debug || CommandlineOptions::debug()) {
      // 	std::lock_guard<std::mutex> lock(IO_sync::mutex);
      // 	std::cerr << "... critical element for " << g << " with respect to " << new_subset
      // 		  << " is " << critelem << std::endl;
      // 	std::cerr << new_subset << " -> g -> " << g.map(new_subset) << std::endl;
      // }

      if (critelem == std::numeric_limits<parameter_type>::max()) {

	// in this case, g(S) = S, and new_elem is automatically the critical element:
	if (image_of_new_elem == new_elem) {
	  new_critelem_tableptr->emplace_back(std::numeric_limits<parameter_type>::max());
	  ++(*stabilizer_cardptr);
	  continue;
	}
	if (image_of_new_elem < new_elem) {
	  new_critelem_tableptr->emplace_back(new_elem);
	  continue;
	}
	return false;
      }
      
      if (image_of_new_elem == critelem) {

	// this is the complicated case:
	// the image g(j) of the new element under the symmetry g
	// is equal to the critical element,
	// thus, there is a new critical element for g w.r.t. S union j,
	// and we have to bite the dust by mapping more than one value:
      
	// no shortcut left: we need to compute the new critical element from scratch:
	const parameter_type new_critelem = critical_element(new_subset, g);
	if ((new_critelem != std::numeric_limits<parameter_type>::max()) && !new_subset.contains(new_critelem)) {

	  // in this case, neither the new subset is fixed nor the new critical element is
	  // in the image of the new subset, thus the new subset is not colex maximal:
	  return false;
	}

	// in this case, the new subset is fixed or the critical element is in the new subset,
	// thus it is colex maximal:
	// remove debug check because this is a very tight loop:
	// if (local_debug || CommandlineOptions::debug()) {
	//   std::lock_guard<std::mutex> lock(IO_sync::mutex);
	//   std::cerr << "... symmetry " << g << " not colex increasing" << std::endl;
	//   std::cerr << new_subset << " -> g -> " << g.map(new_subset) << std::endl;
	// }
	new_critelem_tableptr->emplace_back(new_critelem);
	if (new_critelem == std::numeric_limits<parameter_type>::max()) {

	  // update stabilizer count:
	  ++(*stabilizer_cardptr);
	}
	continue;
      }
      if (image_of_new_elem < critelem) {

	// the image g(j) of the new element j under the symmetry g
	// is strictly smaller than the critical element,
	// thus, S union j is colex-greater than g(S union j),
	// the critical element remains unchanged,
	// and we continue with the next symmetry:
	// remove debug check because this is a very tight loop:
	// if (local_debug || CommandlineOptions::debug()) {
	//   std::lock_guard<std::mutex> lock(IO_sync::mutex);
	//   std::cerr << "... symmetry " << g << " not colex increasing" << std::endl;
	//   std::cerr << new_subset << " -> g -> " << g.map(new_subset) << std::endl;
	// }
	new_critelem_tableptr->emplace_back(critelem);
	continue;
      }
      
      // the image g(j) of the new element j under the symmetry g
      // is strictly smaller than the critical element,
      // thus, g(S union j) is colex-greater than S union j,
      // we do not need updated critical elements,
      // and we return false; the critical-element table built so far has no meaning in this case:
      // remove debug check because this is a very tight loop:
      // if (local_debug || CommandlineOptions::debug()) {
      //   std::lock_guard<std::mutex> lock(IO_sync::mutex);
      //   std::cerr << "... symmetry " << g << " is colex increasing" << std::endl;
      //   std::cerr << new_subset << " -> g -> " << g.map(new_subset) << std::endl;
      // }
      return false;
    }

    // we have not found any colex-increasing symmetry;
    // in that case, all symmetries have been scanned,
    // and therefore all critical elements have been updated:
    return true;
  }

  template <ssg_mode_type mode>
  bool SymmetricSubsetGraphNode<mode>::child_is_colexmax_by_sets(const parameter_type new_elem,
								 critical_element_classification_type* new_critelem_classificationptr,
								 size_type* stabilizer_cardptr) const {
    const bool local_debug = false;
  
    if (local_debug || CommandlineOptions::debug()) {
      std::lock_guard<std::mutex> lock(IO_sync::mutex);
      std::cerr << "SymmetricSubsetGraphNode<mode>::child_is_colexmax(const parameter_type new_elem):" << std::endl;
      std::cerr << "checking extension of subset " << _subset << " by new_element " << new_elem << " ..." << std::endl;
    }
    
    // first, we compute the extended subset:
    const LabelSet new_subset = _subset + new_elem;
    if (_critelem_classification.at(_symmetriesptr->n()).intersection_nonempty(_increasing_symidxsets.at(new_elem))) { 
      
      // if such a symmetry exists, the new subset cannot be colex max:
      return false;
    }
    for (LabelSet::const_iterator subsetiter = _subset.begin();
	 subsetiter != _subset.end();
	 ++subsetiter) {
      const parameter_type critelem = *subsetiter;
      if (critelem >= _symmetriesptr->n() - 1) {
	break;
      }
      if (_critelem_classification.at(critelem).intersection_nonempty(_elm_to_at_least_img_classification.at(new_elem).at(critelem + 1))) {

	// if such a symmetry exists, the new subset cannot be colex max:
	return false;
      }
    }

    // only now initialize the data with the values of the current node:
    try {
      new_critelem_classificationptr->insert(new_critelem_classificationptr->begin(), _critelem_classification.begin(), _critelem_classification.end());
    }
    catch (...) {
      std::cerr << "SymmetricSubsetGraphNode<mode>::child_is_colexmax_by_sets(const parameter_type, critical_element_classification_type*) const: "
		<< "copy of " << _critelem_classification.size() << " int elements failed - exiting."
		<< std::endl;
      exit(1);
    }
    *stabilizer_cardptr = _stabilizer_card;
    LabelSet next_symidx_set;

    for (LabelSet::const_iterator subsetiter = _subset.begin();
	 subsetiter != _subset.end();
	 ++subsetiter) {
      const parameter_type critelem = *subsetiter;
      if ((next_symidx_set = _critelem_classification.at(critelem) * _elm_to_img_classification.at(new_elem).at(critelem)).empty()) {
	continue;
      }
      for (LabelSet::const_iterator critsetiter = next_symidx_set.begin();
	   critsetiter != next_symidx_set.end();
	   ++critsetiter) {
	const size_type& symidx = *critsetiter;
	const Symmetry& g = (*_symmetriesptr).at(symidx);
	const parameter_type& image_of_new_elem = g.at(new_elem);
	
	// this is the complicated case:
	// the image g(j) of the new element under the symmetry g
	// is equal to the critical element,
	// thus, there is a new critical element for g w.r.t. S union j,
	// and we need to compute the new critical element from scratch:
	const parameter_type new_critelem = critical_element(new_subset, g);
	if (new_critelem == std::numeric_limits<parameter_type>::max()) {
	  
	  // in this case, the new subset is fixed, thus it is colex maximal,
	  // and the critical-element table needs an update:
	  (*new_critelem_classificationptr).at(critelem) -= symidx;
	  (*new_critelem_classificationptr).at(_symmetriesptr->n()) += symidx;
	  ++(*stabilizer_cardptr);
	  continue;
	}
	else {
	  if (new_subset.contains(new_critelem)) {
	    
	    // in this case, the critical element is in the new subset,
	    // thus it is colex maximal with new critical element,
	    // and the critical-element table needs an update:
	    (*new_critelem_classificationptr).at(critelem) -= symidx;
	    (*new_critelem_classificationptr).at(new_critelem) += symidx;
	    continue;
	  }
	  
	  // in this case, neither the new subset is fixed nor the new critical element is
	  // in the image of the new subset, thus the new subset is not colex maximal:
	  return false;
	}
      }
      
      // we have not found any colex-increasing symmetry for symmetries mapping
      // new_elem to critelem;
      // for this case, all symmetries with possibly new critical elements
      // have been scanned, and therefore all their critical elements have been updated
    }
    if ((next_symidx_set = _critelem_classification.at(_symmetriesptr->n()) * _decreasing_symidxsets.at(new_elem)).empty()) {
      return true;
    }
    for (LabelSet::const_iterator critsetiter = next_symidx_set.begin();
	 critsetiter != next_symidx_set.end();
	 ++critsetiter) {
      
      // for all these symmetries, the new subset is colex max, but the critical-elements table needs an update,
      // since the new subset is not fixed by these symmetries, so that new_elem becomes critical:
      const size_type& symidx = *critsetiter;      
      (*new_critelem_classificationptr).at(_symmetriesptr->n()) -= symidx;
      --(*stabilizer_cardptr);
      (*new_critelem_classificationptr).at(new_elem) += symidx;
    }    
    return true;
  }

  // auxiliary function to compute critical element from scratch for a symmetry:
  template <ssg_mode_type mode>
  parameter_type SymmetricSubsetGraphNode<mode>::critical_element(const LabelSet& subset,
								  const Symmetry& g) const {
    const LabelSet symdiff(subset ^ g.map(subset));
    if (symdiff.empty()) {
      return std::numeric_limits<parameter_type>::max();
    }
    else {
      return symdiff.max_elem();
    }
  }

  // stream input/output:
  template <ssg_mode_type mode>
  inline std::istream& SymmetricSubsetGraphNode<mode>::read(std::istream& ist) {
    std::cerr << "SymmetricSubsetGraphNode::read(std::istream& ist):"
	      << " reading in a pointer-based structure not supported - exiting."
	      << std::endl;
    exit(1);
    return ist;
  }

  template <ssg_mode_type mode>
  inline std::istream& operator>>(std::istream& ist, SymmetricSubsetGraphNode<mode>& ssgn) {
    return ssgn.read(ist);
  }

  template <ssg_mode_type mode>
  inline std::ostream& SymmetricSubsetGraphNode<mode>::write(std::ostream& ost) const {
    const char colon = ':';
    const char comma = ',';
    const char lbracket = '[';
    const char rbracket = ']';
    ost << lbracket << _subset << colon
	<< _matrix << comma
	<< _critelem_table << comma
	<< _critelem_classification << rbracket;
    return ost;
  }

  template <ssg_mode_type mode>
  inline std::ostream& operator<<(std::ostream& ost, const SymmetricSubsetGraphNode<mode>& ssgn) {
    return ssgn.write(ost);
  }

};

#endif

// eof SymmetricSubsetGraphNode.hh