File: adaboost.cc

package info (click to toggle)
torch-examples 2-2
  • links: PTS
  • area: main
  • in suites: woody
  • size: 676 kB
  • ctags: 39
  • sloc: cpp: 1,973; makefile: 64; csh: 39
file content (211 lines) | stat: -rw-r--r-- 6,704 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
const char *help = "\
AdaBoost (c) Trebolloc & Co 2002\n\
\n\
This program will train an Adaboost of MLPs with tanh outputs for\n\
classification\n";

#include "FileDataSet.h"
#include "MseCriterion.h"
#include "Tanh.h"
#include "MseMeasurer.h"
#include "ClassMeasurer.h"
#include "TwoClassFormat.h"
#include "MultiClassFormat.h"
#include "OneHotClassFormat.h"
#include "StochasticGradient.h"
#include "GMTrainer.h"
#include "CmdLine.h"
#include "MLP.h"
#include "Boosting.h"
#include "WeightedSumMachine.h"

using namespace Torch;

int main(int argc, char **argv)
{
  char *train_file;
  char *test_file;
  int n_inputs;
  int n_targets;
  int n_hu;
  int n_boost;
  int max_load_train;
  int max_load_test;
  int seed_value;
  real accuracy;
  real learning_rate;
  real decay;
  int max_iter;
  char *dir_name;
  char *load_model;
  char *save_model;
  bool multi_class;
  bool one_hot;

  //=================== The command-line ==========================

  CmdLine cmd;

  cmd.info(help);

  cmd.addText("\nArguments:");
  cmd.addICmdArg("n_inputs", &n_inputs, "input dimension of the data");
  cmd.addICmdArg("n_targets", &n_targets, "output dimension of the data");
  cmd.addSCmdArg("train_file", &train_file, "the train file");
  cmd.addSCmdArg("test_file", &test_file, "the test file");

  cmd.addText("\nModel Options:");
  cmd.addICmdOption("-nhu", &n_hu, 25, "number of hidden units");
  cmd.addICmdOption("-nboost_max", &n_boost, 10, "maximum number of MLP in the boost");
  cmd.addBCmdOption("-one_hot", &one_hot, false, "class format = one_hot (default = two_class)");
  cmd.addBCmdOption("-multi_class", &multi_class, false, "class format = multi_class (default = two_class)");

  cmd.addText("\nLearning Options:");
  cmd.addICmdOption("-iter", &max_iter, 25, "max number of iterations");
  cmd.addRCmdOption("-lr", &learning_rate, 0.01, "learning rate");
  cmd.addRCmdOption("-e", &accuracy, 0.00001, "end accuracy");
  cmd.addRCmdOption("-lrd", &decay, 0, "learning rate decay");

  cmd.addText("\nMisc Options:");
  cmd.addICmdOption("-load_train", &max_load_train, -1, "max number of train examples to load");
  cmd.addICmdOption("-load_test", &max_load_test, -1, "max number of test examples to load");
  cmd.addICmdOption("-seed", &seed_value, -1, "initial seed for random generator");
  cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
  cmd.addSCmdOption("-lm", &load_model, "", "start from given model file");
  cmd.addSCmdOption("-sm", &save_model, "", "save results into given model file");

  cmd.read(argc, argv);

  if (seed_value == -1)
    seed();
  else
    manual_seed((long)seed_value);

  //=================== DataSets ===================

  FileDataSet data(train_file, n_inputs, n_targets, false, max_load_train);
  data.setBOption("normalize inputs", true);
  data.init();

  FileDataSet test_data(test_file, n_inputs, n_targets, false, max_load_test);
  test_data.init();
  test_data.normalizeUsingDataSet(&data);

  // how is the class encoded in the datasets
  ClassFormat* class_format=NULL;
  if (one_hot)
    class_format = new OneHotClassFormat(&data);
  else if (multi_class)
    class_format = new MultiClassFormat(&data);
  else
    class_format = new TwoClassFormat(&data);

  //=================== The Model ==================
  // there will be one MLP created for each AdaBoost iteration. For each
  // of these MLP, we want a different MSE measurer and also a Class measurer.
  // we also need to train them, using a MSE criterion and a Stochastic 
  // gradient optimizer, given to a Trainer.

  MLP **mlp = new MLP *[n_boost];
  MseMeasurer **msemeasurer = new MseMeasurer *[n_boost];
  ClassMeasurer **classmeasurer = new ClassMeasurer *[n_boost];
  MseCriterion **mse = new MseCriterion *[n_boost];
  StochasticGradient **opt = new StochasticGradient *[n_boost];
  Trainer **trainer = new Trainer *[n_boost];
  List **trainers_measurers = new List *[n_boost];
  for (int i=0;i<n_boost;i++) {
    mlp[i] = new MLP(n_inputs,n_hu,n_targets);
    mlp[i]->setBOption("tanh outputs",true);
    mlp[i]->init();

    trainers_measurers[i] = NULL;

    char mse_name[100];
    sprintf(mse_name,"%s/the_mse%d_%d",dir_name,i,n_hu);
    msemeasurer[i] = new MseMeasurer(mlp[i]->outputs,&data, mse_name);
    msemeasurer[i]->init();
    addToList(&trainers_measurers[i],1,msemeasurer[i]);

    char class_name[100];
    sprintf(class_name,"%s/the_class_err%d_%d",dir_name,i,n_hu);
    classmeasurer[i] = new ClassMeasurer(mlp[i]->outputs,&data, class_format,class_name);
    classmeasurer[i]->init();
    addToList(&trainers_measurers[i],1,classmeasurer[i]);

    mse[i] = new MseCriterion(n_targets);
    mse[i]->init();

    opt[i] = new StochasticGradient();
    opt[i]->setIOption("max iter", max_iter);
    opt[i]->setROption("end accuracy", accuracy);
    opt[i]->setROption("learning rate", learning_rate);
    opt[i]->setROption("learning rate decay", decay);

    trainer[i] = (Trainer*)new GMTrainer(mlp[i], &data, mse[i], opt[i]);
  }

  WeightedSumMachine bmachine(trainer,n_boost,trainers_measurers);
  bmachine.init();

  // We also want to measure the performance of the AdaBoost itself

  List *measurers = NULL;

  char class_tr_name[100];
  sprintf(class_tr_name,"%s/the_boost_class_train%d",dir_name,n_hu);
  ClassMeasurer class_tr_m(bmachine.outputs,&data,class_format,class_tr_name);
  class_tr_m.init();
  addToList(&measurers,1,&class_tr_m);

  char class_te_name[100];
  sprintf(class_te_name,"%s/the_boost_class_test%d",dir_name,n_hu);
  ClassMeasurer class_te_m(bmachine.outputs,&test_data,class_format,class_te_name);
  class_te_m.init();
  addToList(&measurers,1,&class_te_m);

  Boosting boosting(&bmachine,&data,class_format);

  // =========== Training and/or Testing ===========

  if (strcmp(load_model,"")) {
    char load_model_name[100];
    sprintf(load_model_name,"%s/%s",dir_name,load_model);
    boosting.load(load_model_name);
    for (int i=0;i<n_boost;i++) {
      bmachine.n_trainers = i;
      boosting.n_trainers = i;
      boosting.test(measurers);
    }
  } else {
    boosting.train(measurers);
  }
  if (strcmp(save_model,"")) {
    char save_model_name[100];
    sprintf(save_model_name,"%s/%s",dir_name,save_model);
    boosting.save(save_model_name);
  }

  //=================== The End =====================

  for (int i=0;i<n_boost;i++) {
    delete mlp[i];
    delete mse[i];
    delete trainer[i];
    delete opt[i];
    freeList(&trainers_measurers[i]);
  }

  delete class_format;

  delete[] mlp;
  delete[] mse;
  delete[] trainer;
  delete[] opt;
  delete[] msemeasurer;
  delete[] classmeasurer;
  delete[] trainers_measurers;

  freeList(&measurers);

  return(0);
}