1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
const char *help = "\
AdaBoost (c) Trebolloc & Co 2002\n\
\n\
This program will train an Adaboost of MLPs with tanh outputs for\n\
classification\n";
#include "FileDataSet.h"
#include "MseCriterion.h"
#include "Tanh.h"
#include "MseMeasurer.h"
#include "ClassMeasurer.h"
#include "TwoClassFormat.h"
#include "MultiClassFormat.h"
#include "OneHotClassFormat.h"
#include "StochasticGradient.h"
#include "GMTrainer.h"
#include "CmdLine.h"
#include "MLP.h"
#include "Boosting.h"
#include "WeightedSumMachine.h"
using namespace Torch;
int main(int argc, char **argv)
{
char *train_file;
char *test_file;
int n_inputs;
int n_targets;
int n_hu;
int n_boost;
int max_load_train;
int max_load_test;
int seed_value;
real accuracy;
real learning_rate;
real decay;
int max_iter;
char *dir_name;
char *load_model;
char *save_model;
bool multi_class;
bool one_hot;
//=================== The command-line ==========================
CmdLine cmd;
cmd.info(help);
cmd.addText("\nArguments:");
cmd.addICmdArg("n_inputs", &n_inputs, "input dimension of the data");
cmd.addICmdArg("n_targets", &n_targets, "output dimension of the data");
cmd.addSCmdArg("train_file", &train_file, "the train file");
cmd.addSCmdArg("test_file", &test_file, "the test file");
cmd.addText("\nModel Options:");
cmd.addICmdOption("-nhu", &n_hu, 25, "number of hidden units");
cmd.addICmdOption("-nboost_max", &n_boost, 10, "maximum number of MLP in the boost");
cmd.addBCmdOption("-one_hot", &one_hot, false, "class format = one_hot (default = two_class)");
cmd.addBCmdOption("-multi_class", &multi_class, false, "class format = multi_class (default = two_class)");
cmd.addText("\nLearning Options:");
cmd.addICmdOption("-iter", &max_iter, 25, "max number of iterations");
cmd.addRCmdOption("-lr", &learning_rate, 0.01, "learning rate");
cmd.addRCmdOption("-e", &accuracy, 0.00001, "end accuracy");
cmd.addRCmdOption("-lrd", &decay, 0, "learning rate decay");
cmd.addText("\nMisc Options:");
cmd.addICmdOption("-load_train", &max_load_train, -1, "max number of train examples to load");
cmd.addICmdOption("-load_test", &max_load_test, -1, "max number of test examples to load");
cmd.addICmdOption("-seed", &seed_value, -1, "initial seed for random generator");
cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
cmd.addSCmdOption("-lm", &load_model, "", "start from given model file");
cmd.addSCmdOption("-sm", &save_model, "", "save results into given model file");
cmd.read(argc, argv);
if (seed_value == -1)
seed();
else
manual_seed((long)seed_value);
//=================== DataSets ===================
FileDataSet data(train_file, n_inputs, n_targets, false, max_load_train);
data.setBOption("normalize inputs", true);
data.init();
FileDataSet test_data(test_file, n_inputs, n_targets, false, max_load_test);
test_data.init();
test_data.normalizeUsingDataSet(&data);
// how is the class encoded in the datasets
ClassFormat* class_format=NULL;
if (one_hot)
class_format = new OneHotClassFormat(&data);
else if (multi_class)
class_format = new MultiClassFormat(&data);
else
class_format = new TwoClassFormat(&data);
//=================== The Model ==================
// there will be one MLP created for each AdaBoost iteration. For each
// of these MLP, we want a different MSE measurer and also a Class measurer.
// we also need to train them, using a MSE criterion and a Stochastic
// gradient optimizer, given to a Trainer.
MLP **mlp = new MLP *[n_boost];
MseMeasurer **msemeasurer = new MseMeasurer *[n_boost];
ClassMeasurer **classmeasurer = new ClassMeasurer *[n_boost];
MseCriterion **mse = new MseCriterion *[n_boost];
StochasticGradient **opt = new StochasticGradient *[n_boost];
Trainer **trainer = new Trainer *[n_boost];
List **trainers_measurers = new List *[n_boost];
for (int i=0;i<n_boost;i++) {
mlp[i] = new MLP(n_inputs,n_hu,n_targets);
mlp[i]->setBOption("tanh outputs",true);
mlp[i]->init();
trainers_measurers[i] = NULL;
char mse_name[100];
sprintf(mse_name,"%s/the_mse%d_%d",dir_name,i,n_hu);
msemeasurer[i] = new MseMeasurer(mlp[i]->outputs,&data, mse_name);
msemeasurer[i]->init();
addToList(&trainers_measurers[i],1,msemeasurer[i]);
char class_name[100];
sprintf(class_name,"%s/the_class_err%d_%d",dir_name,i,n_hu);
classmeasurer[i] = new ClassMeasurer(mlp[i]->outputs,&data, class_format,class_name);
classmeasurer[i]->init();
addToList(&trainers_measurers[i],1,classmeasurer[i]);
mse[i] = new MseCriterion(n_targets);
mse[i]->init();
opt[i] = new StochasticGradient();
opt[i]->setIOption("max iter", max_iter);
opt[i]->setROption("end accuracy", accuracy);
opt[i]->setROption("learning rate", learning_rate);
opt[i]->setROption("learning rate decay", decay);
trainer[i] = (Trainer*)new GMTrainer(mlp[i], &data, mse[i], opt[i]);
}
WeightedSumMachine bmachine(trainer,n_boost,trainers_measurers);
bmachine.init();
// We also want to measure the performance of the AdaBoost itself
List *measurers = NULL;
char class_tr_name[100];
sprintf(class_tr_name,"%s/the_boost_class_train%d",dir_name,n_hu);
ClassMeasurer class_tr_m(bmachine.outputs,&data,class_format,class_tr_name);
class_tr_m.init();
addToList(&measurers,1,&class_tr_m);
char class_te_name[100];
sprintf(class_te_name,"%s/the_boost_class_test%d",dir_name,n_hu);
ClassMeasurer class_te_m(bmachine.outputs,&test_data,class_format,class_te_name);
class_te_m.init();
addToList(&measurers,1,&class_te_m);
Boosting boosting(&bmachine,&data,class_format);
// =========== Training and/or Testing ===========
if (strcmp(load_model,"")) {
char load_model_name[100];
sprintf(load_model_name,"%s/%s",dir_name,load_model);
boosting.load(load_model_name);
for (int i=0;i<n_boost;i++) {
bmachine.n_trainers = i;
boosting.n_trainers = i;
boosting.test(measurers);
}
} else {
boosting.train(measurers);
}
if (strcmp(save_model,"")) {
char save_model_name[100];
sprintf(save_model_name,"%s/%s",dir_name,save_model);
boosting.save(save_model_name);
}
//=================== The End =====================
for (int i=0;i<n_boost;i++) {
delete mlp[i];
delete mse[i];
delete trainer[i];
delete opt[i];
freeList(&trainers_measurers[i]);
}
delete class_format;
delete[] mlp;
delete[] mse;
delete[] trainer;
delete[] opt;
delete[] msemeasurer;
delete[] classmeasurer;
delete[] trainers_measurers;
freeList(&measurers);
return(0);
}
|