1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
const char *help = "\
BAG (c) Trebolloc & Co 2001\n\
\n\
This program will train a bagging of MLPs with tanh outputs for\n\
classification and linear outputs for regression\n";
#include "FileDataSet.h"
#include "MseCriterion.h"
#include "Tanh.h"
#include "MseMeasurer.h"
#include "ClassMeasurer.h"
#include "TwoClassFormat.h"
#include "StochasticGradient.h"
#include "GMTrainer.h"
#include "CmdLine.h"
#include "MLP.h"
#include "WeightedSumMachine.h"
#include "Bagging.h"
using namespace Torch;
int main(int argc, char **argv)
{
char *train_file;
char *test_file;
int n_inputs;
int n_targets;
int n_hu;
int n_bag;
int max_load_train;
int max_load_test;
int seed_value;
real accuracy;
real learning_rate;
real decay;
int max_iter;
bool regression;
char *dir_name;
char *load_model;
char *save_model;
bool norm_out;
//=================== The command-line ==========================
CmdLine cmd;
cmd.info(help);
cmd.addText("\nArguments:");
cmd.addICmdArg("n_inputs", &n_inputs, "input dimension of the data");
cmd.addICmdArg("n_targets", &n_targets, "output dimension of the data");
cmd.addSCmdArg("train_file", &train_file, "the train file");
cmd.addSCmdArg("test_file", &test_file, "the test file");
cmd.addText("\nModel Options:");
cmd.addICmdOption("-nhu", &n_hu, 25, "number of hidden units");
cmd.addICmdOption("-nbag_max", &n_bag, 10, "maximum number of MLP in the bag");
cmd.addBCmdOption("-rm", ®ression, false, "regression mode");
cmd.addText("\nLearning Options:");
cmd.addICmdOption("-iter", &max_iter, 25, "max number of iterations");
cmd.addRCmdOption("-lr", &learning_rate, 0.01, "learning rate");
cmd.addRCmdOption("-e", &accuracy, 0.00001, "end accuracy");
cmd.addRCmdOption("-lrd", &decay, 0, "learning rate decay");
cmd.addText("\nMisc Options:");
cmd.addICmdOption("-load_train", &max_load_train, -1, "max number of train examples to load");
cmd.addICmdOption("-load_test", &max_load_test, -1, "max number of test examples to load");
cmd.addICmdOption("-seed", &seed_value, -1, "initial seed for random generator");
cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
cmd.addSCmdOption("-lm", &load_model, "", "start from given model file");
cmd.addSCmdOption("-sm", &save_model, "", "save results into given model file");
cmd.addBCmdOption("-norm_out", &norm_out, false, "normalize targets");
cmd.read(argc, argv);
if (seed_value == -1)
seed();
else
manual_seed((long)seed_value);
//=================== DataSets ===================
FileDataSet data(train_file, n_inputs, n_targets, false, max_load_train);
data.setBOption("normalize inputs", true);
if (norm_out)
data.setBOption("normalize targets", true);
data.init();
FileDataSet test_data(test_file, n_inputs, n_targets, false, max_load_test);
test_data.init();
test_data.normalizeUsingDataSet(&data);
// how is the class encoded in the datasets: TwoClassFormat
TwoClassFormat* class_format=NULL;
if (!regression)
class_format = new TwoClassFormat(&data);
//=================== The Model ==================
// there will be "n_bag" MLPs created for the Bagging. For each
// of these MLP, we want to train them, using a MSE criterion and a
// Stochastic gradient optimizer, given to a Trainer.
MLP **mlp = new MLP *[n_bag];
MseCriterion **mse = new MseCriterion *[n_bag];
StochasticGradient **opt = new StochasticGradient *[n_bag];
Trainer **trainer = new Trainer *[n_bag];
for (int i=0;i<n_bag;i++) {
mlp[i] = new MLP(n_inputs,n_hu,n_targets);
mlp[i]->setBOption("tanh outputs",!regression);
mlp[i]->init();
mse[i] = new MseCriterion(n_targets);
mse[i]->init();
opt[i] = new StochasticGradient();
opt[i]->setIOption("max iter", max_iter);
opt[i]->setROption("end accuracy", accuracy);
opt[i]->setROption("learning rate", learning_rate);
opt[i]->setROption("learning rate decay", decay);
trainer[i] = (Trainer*)new GMTrainer(mlp[i], &data, mse[i], opt[i]);
}
WeightedSumMachine bagmachine(trainer,n_bag,NULL);
bagmachine.init();
// We also want to measure the performance of the Bagging itself
List *measurers = NULL;
char bag_mse_name[100];
sprintf(bag_mse_name,"%s/the_bag_mse%d",dir_name,n_hu);
MseMeasurer msebag(bagmachine.outputs,&data, bag_mse_name);
msebag.init();
addToList(&measurers,1,&msebag);
char bag_test_mse_name[100];
sprintf(bag_test_mse_name,"%s/test_bag_mse%d",dir_name,n_hu);
MseMeasurer msebag_test(bagmachine.outputs,&test_data, bag_test_mse_name);
msebag_test.init();
addToList(&measurers,1,&msebag_test);
char bag_class_name[100];
sprintf(bag_class_name,"%s/the_bag_class_err%d",dir_name,n_hu);
ClassMeasurer classbag(bagmachine.outputs,&data, class_format,bag_class_name);
classbag.init();
if(!regression && (n_targets == 1))
addToList(&measurers,1,&classbag);
char bag_test_class_name[100];
sprintf(bag_test_class_name,"%s/test_bag_class_err%d",dir_name,n_hu);
ClassMeasurer classbag_test(bagmachine.outputs,&test_data, class_format,bag_test_class_name);
classbag_test.init();
if(!regression && (n_targets == 1))
addToList(&measurers,1,&classbag_test);
Bagging bagging(&bagmachine,&data);
// =========== Training and/or Testing ===========
if (strcmp(load_model,"")) {
char load_model_name[100];
sprintf(load_model_name,"%s/%s",dir_name,load_model);
bagging.load(load_model_name);
for (int i=0;i<n_bag;i++) {
bagmachine.n_trainers = i;
bagging.n_trainers = i;
bagging.test(measurers);
}
} else {
bagging.train(measurers);
}
if (strcmp(save_model,"")) {
char save_model_name[100];
sprintf(save_model_name,"%s/%s",dir_name,save_model);
bagging.save(save_model_name);
}
//=================== The End =====================
for (int i=0;i<n_bag;i++) {
delete mlp[i];
delete mse[i];
delete trainer[i];
delete opt[i];
}
if (!regression)
delete class_format;
delete[] mlp;
delete[] mse;
delete[] trainer;
delete[] opt;
freeList(&measurers);
return(0);
}
|