1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
const char *help = "\
BayesClassifier (c) Bison Ravi et Samy Bengio 2001\n\
\n\
This program will train a BayesClassifier of GMMs\n";
#include "EMTrainer.h"
#include "DiagonalGMM.h"
#include "Kmeans.h"
#include "SeqDataSet.h"
#include "MatSeqDataSet.h"
#include "HtkSeqDataSet.h"
#include "CmdLine.h"
#include "NllMeasurer.h"
#include "BayesClassifier.h"
#include "BayesClassifierMachine.h"
#include "ClassMeasurer.h"
#include "MultiClassFormat.h"
#include "OneHotClassFormat.h"
#include "TwoClassFormat.h"
using namespace Torch;
int main(int argc, char **argv)
{
char* train_file;
char* test_file;
int n_inputs;
int n_observations;
int n_targets;
int max_load;
int max_load_test;
int seed_value;
real accuracy;
real threshold;
int max_iter_kmeans;
int max_iter_gmm;
char *dir_name;
int n_gaussians;
real prior;
char *load_model;
char *save_model;
bool dynamic;
int kfold;
bool one_hot;
bool multi_class;
bool equal_bayes_prior;
//=================== The command-line ==========================
CmdLine cmd;
// Put the help line at the beginning
cmd.info(help);
// Ask for arguments
cmd.addText("\nArguments:");
cmd.addSCmdArg("file", &train_file, "the train files, in double-quote");
// Propose some options
cmd.addText("\nModel Options:");
cmd.addICmdOption("-n_gaussians", &n_gaussians, 10, "number of Gaussians");
cmd.addRCmdOption("-threshold", &threshold, 0.0001, "variance threshold");
cmd.addRCmdOption("-prior", &prior, 0.001, "prior on the weights of the mixture");
cmd.addBCmdOption("-equal_bayes_prior", &equal_bayes_prior, false, "give equal prior to each class");
cmd.addText("\nLearning Options:");
cmd.addICmdOption("-iterk", &max_iter_kmeans, 25, "max number of iterations of Kmeans initialization");
cmd.addICmdOption("-iterg", &max_iter_gmm, 25, "max number of iterations of EM training for GMMs");
cmd.addRCmdOption("-e", &accuracy, 0.0001, "end accuracy");
cmd.addText("\nMisc Options:");
cmd.addICmdOption("-Kfold", &kfold, 5, "k-fold crossValidation");
cmd.addSCmdOption("-test_file", &test_file, "", "test data file");
cmd.addBCmdOption("-dynamic", &dynamic, false, "dynamic problems");
cmd.addBCmdOption("-multi_class", &multi_class, false, "data is in multi_class format");
cmd.addBCmdOption("-one_hot", &one_hot, false, "data is in one_hot format");
cmd.addICmdOption("-load", &max_load, -1, "max number of train examples to load");
cmd.addICmdOption("-load_test", &max_load_test, -1, "max number of test examples to load");
cmd.addICmdOption("-seed", &seed_value, -1, "initial seed for random generator");
cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
cmd.addSCmdOption("-lm", &load_model, "", "start from given model file");
cmd.addSCmdOption("-sm", &save_model, "", "save results into given model file");
// Read the command line
cmd.read(argc, argv);
// If the user didn't give any random seed,
// generate a random random seed...
if (seed_value == -1)
seed();
else
manual_seed((long)seed_value);
//=================== DataSets ===================
char* train_files[1000];
int n;
train_files[0] = strtok(train_file," ");
for(n = 1;(train_files[n] = strtok(NULL," "));n++);
SeqDataSet* data = NULL;
SeqDataSet* tdata = NULL;
data = new MatSeqDataSet(train_files, n, 0, -1, 1, false, max_load);
data->init();
if (!dynamic)
data->toOneFramePerExample();
if(strcmp(test_file, "") ) {
tdata = new MatSeqDataSet(test_file, 0, -1, 1, false, max_load_test);
tdata->init();
if (!dynamic)
tdata->toOneFramePerExample();
}
n_inputs = data->n_inputs;
n_observations = data->n_observations;
n_targets = data->n_targets;
// How the dataset encodes the class format?
ClassFormat *class_format = NULL;
if (multi_class)
class_format = new MultiClassFormat(data);
else if (one_hot)
class_format = new OneHotClassFormat(data);
else
class_format = new TwoClassFormat(data);
int n_classes = class_format->getNumberOfClasses();
// for the Gaussian mixtures, give the minimum variance value per dimension
real* thresh = (real*)xalloc(n_observations*sizeof(real));
for (int i=0;i<n_observations;i++)
thresh[i] = threshold;
// create the model. For each class, we need to create a DiagonalGMM. This
// DiagonalGMM will be initialized by a Kmeans which will be trained by a
// EMTrainer (we are talking about the Kmeans). We will also record the
// Kmeans score during training as well as the DiagonalGMM during EM.
Kmeans** kmeans = new Kmeans *[n_classes];
EMTrainer** kmeans_trainer = new EMTrainer *[n_classes];
DiagonalGMM** gmm = new DiagonalGMM *[n_classes];
Trainer** trainer = new Trainer *[n_classes];
NllMeasurer** nll_meas_kmeans = new NllMeasurer *[n_classes];
NllMeasurer** nll_meas_gmm = new NllMeasurer *[n_classes];
List** meas_kmeans = new List *[n_classes];
List** meas_gmm = new List *[n_classes];
for(int i = 0;i < n_classes;i++) {
meas_kmeans[i] = NULL;
meas_gmm[i] = NULL;
}
for(int classe = 0;classe < n_classes;classe++) {
kmeans[classe] = new Kmeans(n_observations,n_gaussians,thresh,prior,data);
kmeans[classe]->init();
kmeans[classe]->reset();
kmeans_trainer[classe] = new EMTrainer(kmeans[classe],data);
kmeans_trainer[classe]->setROption("end accuracy", accuracy);
kmeans_trainer[classe]->setIOption("max iter", max_iter_kmeans);
char kmeans_name[100];
sprintf(kmeans_name,"%s/kmeans_val_%d",dir_name, classe);
nll_meas_kmeans[classe] = new NllMeasurer(kmeans[classe]->outputs, data, kmeans_name);
nll_meas_kmeans[classe]->init();
addToList(&meas_kmeans[classe], 1, nll_meas_kmeans[classe]);
gmm[classe] = new DiagonalGMM(n_observations, n_gaussians, thresh, prior);
gmm[classe]->setOption("initial kmeans trainer",&kmeans_trainer[classe]);
gmm[classe]->setOption("initial kmeans trainer measurers",&meas_kmeans[classe]);
gmm[classe]->init();
trainer[classe] = new EMTrainer(gmm[classe],data);
trainer[classe]->setROption("end accuracy", accuracy);
trainer[classe]->setIOption("max iter", max_iter_gmm);
char gmm_name[100];
sprintf(gmm_name,"%s/gmm_val_%d",dir_name, classe);
nll_meas_gmm[classe] = new NllMeasurer(gmm[classe]->outputs, data, gmm_name);
nll_meas_gmm[classe]->init();
addToList(&meas_gmm[classe], 1, nll_meas_gmm[classe]);
}
message(">>> GMMs initialized <<< ");
// The BayesClassifier can be given a prior probability for each class
// in order to weight the posterior
real* bayes_prior = NULL;
if (equal_bayes_prior) {
bayes_prior = (real*)xalloc(n_classes*sizeof(real));
for (int i=0;i<n_classes;i++)
bayes_prior[i] = -log((real)n_classes);
}
BayesClassifierMachine machine(trainer, n_classes, meas_gmm,class_format,bayes_prior);
machine.init();
BayesClassifier bayes(&machine, data);
List *measurers = NULL;
List *test_measurers = NULL;
char bayes_mes_name[100];
sprintf(bayes_mes_name, "%s/bayes_train_err", dir_name);
char bayes_tmes_name[100];
sprintf(bayes_tmes_name, "%s/bayes_test_err", dir_name);
Measurer* mes = NULL;
Measurer* tmes = NULL;
mes = new ClassMeasurer(machine.outputs, data, class_format, bayes_mes_name);
mes->init();
addToList(&measurers, 1, mes);
if(strcmp(test_file, "")) {
tmes = new ClassMeasurer(machine.outputs, tdata, class_format, bayes_tmes_name);
tmes->init();
addToList(&measurers, 1, tmes);
} else {
tmes = new ClassMeasurer(machine.outputs, data, class_format, bayes_tmes_name);
tmes->init();
addToList(&test_measurers, 1, tmes);
}
// =========== Training or Testing =================
char load_model_name[100];
if(strcmp(load_model, ""))
sprintf(load_model_name, "%s/%s", dir_name, load_model);
if(strcmp(load_model, "")) {
bayes.load(load_model_name);
bayes.test(measurers);
} else {
if(!strcmp(test_file, ""))
bayes.crossValidate(kfold, measurers, test_measurers);
else {
bayes.train(NULL);
bayes.test(measurers);
}
if(strcmp(save_model, "")) {
char save_model_name[100];
sprintf(save_model_name, "%s/%s", dir_name, save_model);
bayes.save(save_model_name);
}
}
//if you love someone, set them free
for(int classe = 0;classe < n_classes;classe++) {
delete(kmeans[classe]);
delete(kmeans_trainer[classe]);
delete(gmm[classe]);
delete(trainer[classe]);
delete(nll_meas_kmeans[classe]);
freeList(&meas_kmeans[classe]);
delete(nll_meas_gmm[classe]);
freeList(&meas_gmm[classe]);
}
delete[] kmeans;
delete[] kmeans_trainer;
delete[] gmm;
delete[] trainer;
delete[] nll_meas_kmeans;
delete[] meas_kmeans;
delete[] nll_meas_gmm;
delete[] meas_gmm;
free(thresh);
delete mes;
delete tmes;
freeList(&measurers);
if (test_measurers)
freeList(&test_measurers);
if (equal_bayes_prior)
free(bayes_prior);
delete class_format;
delete data;
delete tdata;
return(0);
}
|