File: bayes.cc

package info (click to toggle)
torch-examples 2-2
  • links: PTS
  • area: main
  • in suites: woody
  • size: 676 kB
  • ctags: 39
  • sloc: cpp: 1,973; makefile: 64; csh: 39
file content (287 lines) | stat: -rw-r--r-- 9,144 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
const char *help = "\
BayesClassifier (c) Bison Ravi et Samy Bengio 2001\n\
\n\
This program will train a BayesClassifier of GMMs\n";

#include "EMTrainer.h"
#include "DiagonalGMM.h"
#include "Kmeans.h"
#include "SeqDataSet.h"
#include "MatSeqDataSet.h"
#include "HtkSeqDataSet.h"
#include "CmdLine.h"
#include "NllMeasurer.h"
#include "BayesClassifier.h"
#include "BayesClassifierMachine.h"
#include "ClassMeasurer.h"
#include "MultiClassFormat.h"
#include "OneHotClassFormat.h"
#include "TwoClassFormat.h"

using namespace Torch;

int main(int argc, char **argv)
{
  char* train_file;
  char* test_file;
  int n_inputs;
  int n_observations;
  int n_targets;
  int max_load;
  int max_load_test;
  int seed_value;
  real accuracy;
  real threshold;
  int max_iter_kmeans;
  int max_iter_gmm;
  char *dir_name;
  int n_gaussians;
  real prior;
  char *load_model;
  char *save_model;
  bool dynamic;
  int kfold;
  bool one_hot;
  bool multi_class;
  bool equal_bayes_prior;

  //=================== The command-line ==========================

  CmdLine cmd;

  // Put the help line at the beginning
  cmd.info(help);

  // Ask for arguments
  cmd.addText("\nArguments:");
  cmd.addSCmdArg("file", &train_file, "the train files, in double-quote");

  // Propose some options
  cmd.addText("\nModel Options:");
  cmd.addICmdOption("-n_gaussians", &n_gaussians, 10, "number of Gaussians");
  cmd.addRCmdOption("-threshold", &threshold, 0.0001, "variance threshold");
  cmd.addRCmdOption("-prior", &prior, 0.001, "prior on the weights of the mixture");
  cmd.addBCmdOption("-equal_bayes_prior", &equal_bayes_prior, false, "give equal prior to each class");

  cmd.addText("\nLearning Options:");
  cmd.addICmdOption("-iterk", &max_iter_kmeans, 25, "max number of iterations of Kmeans initialization");
  cmd.addICmdOption("-iterg", &max_iter_gmm, 25, "max number of iterations of EM training for GMMs");
  cmd.addRCmdOption("-e", &accuracy, 0.0001, "end accuracy");

  cmd.addText("\nMisc Options:");
  cmd.addICmdOption("-Kfold", &kfold, 5, "k-fold crossValidation");
  cmd.addSCmdOption("-test_file", &test_file, "", "test data file");
  cmd.addBCmdOption("-dynamic", &dynamic, false, "dynamic problems");
  cmd.addBCmdOption("-multi_class", &multi_class, false, "data is in multi_class format");
  cmd.addBCmdOption("-one_hot", &one_hot, false, "data is in one_hot format");
  cmd.addICmdOption("-load", &max_load, -1, "max number of train examples to load");
  cmd.addICmdOption("-load_test", &max_load_test, -1, "max number of test examples to load");
  cmd.addICmdOption("-seed", &seed_value, -1, "initial seed for random generator");
  cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
  cmd.addSCmdOption("-lm", &load_model, "", "start from given model file");
  cmd.addSCmdOption("-sm", &save_model, "", "save results into given model file");

  // Read the command line
  cmd.read(argc, argv);

  // If the user didn't give any random seed,
  // generate a random random seed...
  if (seed_value == -1)
    seed();
  else
    manual_seed((long)seed_value);

  //=================== DataSets ===================

  char* train_files[1000];
  int n;
  train_files[0] = strtok(train_file," ");
  for(n = 1;(train_files[n] = strtok(NULL," "));n++);

  SeqDataSet* data = NULL;
  SeqDataSet* tdata = NULL;

  data = new MatSeqDataSet(train_files, n, 0, -1, 1, false, max_load);
  data->init();
  if (!dynamic)
    data->toOneFramePerExample();

  if(strcmp(test_file, "") ) {
    tdata = new MatSeqDataSet(test_file, 0, -1, 1, false, max_load_test);
    tdata->init();
    if (!dynamic)
      tdata->toOneFramePerExample();
  }
  n_inputs = data->n_inputs;
  n_observations = data->n_observations;
  n_targets = data->n_targets;

  // How the dataset encodes the class format?
  ClassFormat *class_format = NULL;
  if (multi_class)
    class_format = new MultiClassFormat(data);
  else if (one_hot)
    class_format = new OneHotClassFormat(data);
  else
    class_format = new TwoClassFormat(data);

  int n_classes = class_format->getNumberOfClasses();

  // for the Gaussian mixtures, give the minimum variance value per dimension
  real* thresh = (real*)xalloc(n_observations*sizeof(real));
  for (int i=0;i<n_observations;i++)
    thresh[i] = threshold;
  
  // create the model. For each class, we need to create a DiagonalGMM. This
  // DiagonalGMM will be initialized by a Kmeans which will be trained by a
  // EMTrainer (we are talking about the Kmeans). We will also record the
  // Kmeans score during training as well as the DiagonalGMM during EM.
  Kmeans** kmeans = new Kmeans *[n_classes];
  EMTrainer** kmeans_trainer = new EMTrainer *[n_classes];
  DiagonalGMM** gmm = new DiagonalGMM *[n_classes];
  Trainer** trainer = new Trainer *[n_classes];
  NllMeasurer** nll_meas_kmeans = new NllMeasurer *[n_classes];
  NllMeasurer** nll_meas_gmm = new NllMeasurer *[n_classes];
  
  List** meas_kmeans = new List *[n_classes];
  List** meas_gmm = new List *[n_classes];
  
  for(int i = 0;i < n_classes;i++) {
    meas_kmeans[i]  = NULL;
    meas_gmm[i]  = NULL;
  }
  
  for(int classe = 0;classe < n_classes;classe++) {
    kmeans[classe] = new Kmeans(n_observations,n_gaussians,thresh,prior,data);
    kmeans[classe]->init();
    kmeans[classe]->reset();
  
    kmeans_trainer[classe] = new EMTrainer(kmeans[classe],data);
    kmeans_trainer[classe]->setROption("end accuracy", accuracy);
    kmeans_trainer[classe]->setIOption("max iter", max_iter_kmeans);
    
    char kmeans_name[100];
    sprintf(kmeans_name,"%s/kmeans_val_%d",dir_name, classe);
    nll_meas_kmeans[classe] = new NllMeasurer(kmeans[classe]->outputs, data, kmeans_name);
    nll_meas_kmeans[classe]->init();
    addToList(&meas_kmeans[classe], 1, nll_meas_kmeans[classe]);

    gmm[classe] = new DiagonalGMM(n_observations, n_gaussians, thresh, prior);
    gmm[classe]->setOption("initial kmeans trainer",&kmeans_trainer[classe]);
    gmm[classe]->setOption("initial kmeans trainer measurers",&meas_kmeans[classe]);
    gmm[classe]->init();
    
    trainer[classe] = new EMTrainer(gmm[classe],data);
    trainer[classe]->setROption("end accuracy", accuracy);
    trainer[classe]->setIOption("max iter", max_iter_gmm);

    char gmm_name[100];
    sprintf(gmm_name,"%s/gmm_val_%d",dir_name, classe);
    nll_meas_gmm[classe] = new NllMeasurer(gmm[classe]->outputs, data, gmm_name);
    nll_meas_gmm[classe]->init();
    addToList(&meas_gmm[classe], 1, nll_meas_gmm[classe]);
  }

  message(">>> GMMs initialized <<< ");

  // The BayesClassifier can be given a prior probability for each class
  // in order to weight the posterior
  real* bayes_prior = NULL;
  if (equal_bayes_prior) {
    bayes_prior = (real*)xalloc(n_classes*sizeof(real));
    for (int i=0;i<n_classes;i++)
      bayes_prior[i] = -log((real)n_classes);
  }

  BayesClassifierMachine machine(trainer, n_classes, meas_gmm,class_format,bayes_prior);
  machine.init();

  BayesClassifier bayes(&machine, data);

  
  List *measurers = NULL;
  List *test_measurers = NULL;
  char bayes_mes_name[100];
  sprintf(bayes_mes_name, "%s/bayes_train_err", dir_name);
  char bayes_tmes_name[100];
  sprintf(bayes_tmes_name, "%s/bayes_test_err", dir_name);

  Measurer* mes = NULL;
  Measurer* tmes = NULL;

  mes = new ClassMeasurer(machine.outputs, data, class_format, bayes_mes_name);
  mes->init();
  addToList(&measurers, 1, mes);
  if(strcmp(test_file, "")) {
    tmes = new ClassMeasurer(machine.outputs, tdata, class_format, bayes_tmes_name);
    tmes->init();
    addToList(&measurers, 1, tmes);
  } else {
    tmes = new ClassMeasurer(machine.outputs, data, class_format, bayes_tmes_name);
    tmes->init();
    addToList(&test_measurers, 1, tmes);
  }

    
  // =========== Training or Testing =================


  char load_model_name[100];
  if(strcmp(load_model, ""))
    sprintf(load_model_name, "%s/%s", dir_name, load_model);

  if(strcmp(load_model, "")) {
    bayes.load(load_model_name);
    bayes.test(measurers);
  } else {
    if(!strcmp(test_file, ""))
      bayes.crossValidate(kfold, measurers, test_measurers);
    else {
      bayes.train(NULL);
      bayes.test(measurers);
    }
    
    if(strcmp(save_model, "")) {
      char save_model_name[100];
      sprintf(save_model_name, "%s/%s", dir_name, save_model);
      bayes.save(save_model_name);
    }
  }
  
  //if you love someone, set them free
  
  for(int classe = 0;classe < n_classes;classe++) {
    delete(kmeans[classe]);
    delete(kmeans_trainer[classe]);
    delete(gmm[classe]);
    delete(trainer[classe]);
    delete(nll_meas_kmeans[classe]);
    freeList(&meas_kmeans[classe]);
    delete(nll_meas_gmm[classe]);
    freeList(&meas_gmm[classe]);
  }

  delete[] kmeans;
  delete[] kmeans_trainer;
  delete[] gmm;
  delete[] trainer;
  delete[] nll_meas_kmeans;
  delete[] meas_kmeans;
  delete[] nll_meas_gmm;
  delete[] meas_gmm;
  free(thresh);

  delete mes;
  delete tmes;
  freeList(&measurers);
  if (test_measurers)
    freeList(&test_measurers);
  
  if (equal_bayes_prior)
    free(bayes_prior);

  delete class_format;
  delete data;
  delete tdata;
  return(0);
}