1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
|
const char *help = "\
hmm_speech (c) Trebolloc & Co 2001\n\
\n\
This program will train a HMM for a connected word speech recognition experiment\n";
#include "EditDistanceMeasurer.h"
#include "WordSegMeasurer.h"
#include "EMTrainer.h"
#include "ViterbiTrainer.h"
#include "DiagonalGMM.h"
#include "Kmeans.h"
#include "SpeechHMM.h"
#include "Dictionary.h"
#include "MatSeqDataSet.h"
#include "HtkSeqDataSet.h"
#include "CmdLine.h"
#include "NllMeasurer.h"
using namespace Torch;
// load a SpeechHMM that was saved in the HTK format
// assumes that it uses DiagonalGMMs
void load_htk_model(char* filename, SpeechHMM* shmm)
{
char line[1000];
char* values[1000];
int n;
FILE* f=fopen(filename,"r");
if (!f)
error("file %s cannot be opened",filename);
// initialization
for (int i=0;i<shmm->n_models;i++) {
HMM* hmm = shmm->models[i];
for (int j=1;j<hmm->n_states-1;j++) {
DiagonalGMM* gmm = (DiagonalGMM*)hmm->states[j];
for (int k=0;k<gmm->n_gaussians;k++) {
gmm->log_weights[k] = LOG_ZERO;
for (int l=0;l<gmm->n_observations;l++) {
gmm->means[k][l] = 0;
gmm->var[k][l] = 1;
}
}
}
for (int j=0;j<hmm->n_states;j++) {
for (int k=0;k<hmm->n_states;k++) {
hmm->log_transitions[k][j] = LOG_ZERO;
}
}
}
// reading the model
int model = -1;
int state = 0;
int mixture = 0;
real w;
HMM* hmm = NULL;
DiagonalGMM* gmm = NULL;
fgets(line,1000,f);
while (!feof(f)) {
if (strstr(line,"~h")) {
model++;
hmm = shmm->models[model];
} else if (strstr(line,"<STATE>")) {
sscanf(line,"%*s %d",&state);
gmm = (DiagonalGMM*)hmm->states[state-1];
} else if (strstr(line,"<MIXTURE>")) {
sscanf(line,"%*s %d %f",&mixture,&w);
gmm->log_weights[mixture-1] = log(w);
} else if (strstr(line,"<MEAN>")) {
fgets(line,1000,f);
values[0] = strtok(line," ");
for (n=1;(values[n]=strtok(NULL," "));n++);
for (int l=0;l<gmm->n_observations;l++) {
gmm->means[mixture-1][l] = (real)atof(values[l]);;
}
} else if (strstr(line,"<VARIANCE>")) {
fgets(line,1000,f);
values[0] = strtok(line," ");
for (n=1;(values[n]=strtok(NULL," "));n++);
for (int l=0;l<gmm->n_observations;l++) {
gmm->var[mixture-1][l] = (real)atof(values[l]);;
}
} else if (strstr(line,"<TRANSP>")) {
for (int j=0;j<hmm->n_states;j++) {
fgets(line,1000,f);
values[0] = strtok(line," ");
for (n=1;(values[n]=strtok(NULL," "));n++);
for (int k=0;k<hmm->n_states;k++) {
w = atof(values[k]);
hmm->log_transitions[k][j] = w == 0 ? LOG_ZERO : log(w);
}
}
}
fgets(line,1000,f);
}
fclose(f);
}
// this function saves in HTK format a given SpeechHMM
void save_htk_model(char* filename, SpeechHMM* shmm, char**phonemes)
{
FILE* f=fopen(filename,"w");
if (!f)
error("file %s cannot be opened",filename);
fprintf(f,"~o\n");
fprintf(f,"<STREAMINFO> 1 %d\n",shmm->n_observations);
fprintf(f,"<VECSIZE> %d<NULLD><MFCC_D_A_O>\n",shmm->n_observations);
for (int i=0;i<shmm->n_models;i++) {
HMM* hmm = shmm->models[i];
fprintf(f,"~h \"%s\"\n",phonemes[i]);
fprintf(f,"<BEGINHMM>\n");
fprintf(f,"<NUMSTATES> %d\n",hmm->n_states);
for (int j=1;j<hmm->n_states-1;j++) {
DiagonalGMM* gmm = (DiagonalGMM*)hmm->states[j];
fprintf(f,"<STATE> %d\n",j+1);
fprintf(f,"<NUMMIXES> %d\n",gmm->n_gaussians);
for (int k=0;k<gmm->n_gaussians;k++) {
fprintf(f,"<MIXTURE> %d %12.10e\n",k+1,exp(gmm->log_weights[k]));
fprintf(f,"<MEAN> %d\n",gmm->n_observations);
for (int l=0;l<gmm->n_observations;l++) {
fprintf(f,"%12.10e ",gmm->means[k][l]);
}
fprintf(f,"\n");
fprintf(f,"<VARIANCE> %d\n",gmm->n_observations);
for (int l=0;l<gmm->n_observations;l++) {
fprintf(f,"%12.10e ",gmm->var[k][l]);
}
fprintf(f,"\n");
}
}
fprintf(f,"<TRANSP> %d\n",hmm->n_states);
for (int j=0;j<hmm->n_states;j++) {
for (int k=0;k<hmm->n_states;k++) {
fprintf(f,"%12.10e ",hmm->log_transitions[k][j] != LOG_ZERO ? exp(hmm->log_transitions[k][j]) : 0);
}
fprintf(f,"\n");
}
fprintf(f,"<ENDHMM>\n");
}
fclose(f);
}
// this function can be used to add silences at the beginning
// of each target sequence
void add_sil_to_targets(SeqDataSet* data, int sil_word)
{
for (int i=0;i<data->n_examples;i++) {
data->setExample(i);
SeqExample* ex = (SeqExample*)data->inputs->ptr;
if (ex->n_seqtargets>0) {
ex->seqtargets = (real**)xrealloc(ex->seqtargets,sizeof(real*)*(ex->n_seqtargets+1));
for (int j=ex->n_seqtargets;j>0;j--)
ex->seqtargets[j] = ex->seqtargets[j-1];
ex->seqtargets[0] = (real*)xalloc(sizeof(real));
ex->seqtargets[0][0] = sil_word;
ex->n_seqtargets ++;
}
}
}
// this function reads from a filename the list of legal phonemes
// and return it
char** read_phonemes(char* filename, int* n_phonemes)
{
FILE *f=fopen(filename,"r");
if (!f)
error("file %s cannot be open",filename);
fscanf(f,"%d",n_phonemes);
char** phonemes = (char**)xalloc(sizeof(char*)* *n_phonemes);
char word[100];
for (int i=0;i<*n_phonemes;i++) {
fscanf(f,"%s",word);
phonemes[i] = (char*)xalloc(sizeof(char)*(strlen(word)+1));
strcpy(phonemes[i],word);
}
fclose(f);
return phonemes;
}
// this function read a file which contains a list of filenames,
// transform them to add the path and the extension, and returns the
// given list, which should then contain the list of speech sequences
char** read_data(char* filename, int* n_data,char* data_dir, char* extension)
{
// first find number of data files
char command[300];
sprintf(command,"wc -l %s",filename);
FILE *f=popen(command,"r");
if (!f)
error("file %s cannot be open",filename);
int n;
fscanf(f,"%d",&n);
*n_data = n;
fclose(f);
char** data = (char**)xalloc(sizeof(char*)* n);
f=fopen(filename,"r");
if (!f)
error("file %s cannot be open",filename);
for (int i=0;i<n;i++) {
char word[300];
fscanf(f,"%s",word);
word[strlen(word)-1]='\0'; // strip last \"
data[i] = (char*)xalloc(sizeof(char)*(strlen(word)+2+strlen(extension)+strlen(data_dir)));
sprintf(data[i],"%s/%s.%s",data_dir,&word[1],extension);
}
fclose(f);
return data;
}
int main(int argc, char **argv)
{
char *train_file;
char *cv_file;
char *test_file;
char *target_train_file;
char *target_cv_file;
char *target_test_file;
char *data_dir;
char *train_alignment;
int max_load_train;
int max_load_test;
int max_load_cv;
int seed_value;
real accuracy;
real threshold;
int max_iter_kmeans;
int max_iter_hmm;
char *dir_name;
char *load_model;
char *save_model;
int n_gaussians;
int n_states;
real prior;
char* phoneme_name;
char* dict_name;
int silence_word;
char* silence_name;
bool htk;
bool big_endian;
bool little_endian;
bool viterbi;
real word_entrance_penalty;
int initial_aligned_training_iter;
char* extension;
bool isolated;
bool save_htk;
bool htk_model;
CmdLine cmd;
cmd.info(help);
cmd.addText("\nArguments:");
cmd.addSCmdArg("phoneme_name", &phoneme_name, "the list of phonemes file");
cmd.addSCmdArg("dict_name", &dict_name, "the dictionary file");
cmd.addSCmdArg("train_file", &train_file, "the train file list");
cmd.addSCmdArg("target_train_file", &target_train_file, "the target_train file");
cmd.addSCmdArg("test_file", &test_file, "the test file list");
cmd.addSCmdArg("target_test_file", &target_test_file, "the target_test file");
cmd.addText("\nOptions:");
cmd.addSCmdOption("-silence", &silence_name,"sil", "name of silence word");
cmd.addSCmdOption("-train_alignment", &train_alignment,"", "train_alignment file");
cmd.addICmdOption("-initial_aligned_training_iter", &initial_aligned_training_iter,0, "initial aligned EM/Viterbi training iterations");
cmd.addSCmdOption("-data_dir", &data_dir,".", "directory containing data");
cmd.addSCmdOption("-cv_file", &cv_file, "","the cross-valid file list");
cmd.addSCmdOption("-target_cv_file", &target_cv_file, "","the target_cv file");
cmd.addSCmdOption("-extension", &extension, "mfcSC","extension of HTK files");
cmd.addBCmdOption("-save_htk", &save_htk, false,"convert model to HTK format");
cmd.addBCmdOption("-htk_model", &htk_model, false,"model file is in HTK format");
cmd.addText("\nPhoneme Model Options:");
cmd.addICmdOption("-n_gaussians", &n_gaussians, 10, "number of Gaussians");
cmd.addICmdOption("-n_states", &n_states, 5, "number of states");
cmd.addRCmdOption("-threshold", &threshold, 0.1, "relative var threshold");
cmd.addRCmdOption("-prior", &prior, 0.001, "prior on the weights and transitions");
cmd.addBCmdOption("-isolated", &isolated, false, "isolated word recognition only");
cmd.addText("\nLearning Options:");
cmd.addBCmdOption("-viterbi", &viterbi, false, "viterbi learning (else EM learning)");
cmd.addICmdOption("-iterk", &max_iter_kmeans, 25, "max number of iterations of Kmeans");
cmd.addICmdOption("-iter", &max_iter_hmm, 25, "max number of iterations of HMM");
cmd.addRCmdOption("-e", &accuracy, 0.0001, "end accuracy");
cmd.addText("\nMisc Options:");
cmd.addBCmdOption("-big_endian", &big_endian, false, "load in big endian format");
cmd.addBCmdOption("-little_endian", &little_endian, false, "load in little endian format");
cmd.addBCmdOption("-htk", &htk, false, "use the HTK file format");
cmd.addICmdOption("-load_train", &max_load_train, -1, "max number of train examples to load");
cmd.addICmdOption("-load_test", &max_load_test, -1, "max number of test examples to load");
cmd.addICmdOption("-load_cv", &max_load_cv, -1, "max number of cv examples to load");
cmd.addICmdOption("-seed", &seed_value, -1, "initial seed for random generator");
cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
cmd.addSCmdOption("-lm", &load_model, "", "start from given model file");
cmd.addSCmdOption("-sm", &save_model, "", "save results into given model file");
cmd.addRCmdOption("-word_entrance_penalty", &word_entrance_penalty, 0., "word entrance penalty");
cmd.read(argc, argv);
if (seed_value == -1)
seed();
else
manual_seed((long)seed_value);
// read phoneme list and dictionary
int n_phonemes;
char** phonemes = read_phonemes(phoneme_name,&n_phonemes);
Dictionary dict(dict_name,phonemes,n_phonemes);
// find silence word
silence_word = dict.findWord(silence_name);
if (silence_word < 0)
error("silence word %s is not in dictionary",silence_name);
dict.silence_word = silence_word;
int silence_phoneme = dict.words[silence_word][0];
// create grammar
bool all_sentences_starts_with_silence = true;
Grammar grammar(dict.n_words+3);
grammar.words[0] = -1; // initial state
grammar.words[1] = silence_word; // initial silence
grammar.words[dict.n_words+1] = silence_word; // final silence
grammar.words[dict.n_words+2] = -1; // final state
int* gw = &grammar.words[2];
for (int i=0;i<dict.n_words;i++) {
if (i != silence_word)
*gw++ = i;
}
grammar.transitions[1][0] = true;
for (int i=0;i<dict.n_words-1;i++) {
grammar.transitions[i+2][1] = true;
grammar.transitions[dict.n_words+1][i+2] = true;
if (!isolated) {
for (int j=0;j<dict.n_words-1;j++)
grammar.transitions[j+2][i+2] = true;
}
}
grammar.transitions[dict.n_words+2][dict.n_words+1] = true;
// load datasets
if (big_endian)
setBigEndianMode();
else if (little_endian)
setLittleEndianMode();
int n_train_data;
char** train_files = read_data(train_file,&n_train_data, data_dir,extension);
int real_n_train_data = n_train_data;
if (n_train_data!=1) {
n_train_data = max_load_train > 0 && max_load_train < n_train_data ? max_load_train : n_train_data;
max_load_train = -1;
}
SeqDataSet *data;
if (htk) {
HtkSeqDataSet *hdata = new HtkSeqDataSet(train_files,n_train_data, max_load_train);
hdata->setDictionary(&dict);
hdata->setNPerFrame(125000);
data = hdata;
} else {
data = new MatSeqDataSet(train_files, n_train_data, 0,-1,0,false, max_load_train);
}
data->init();
data->readTargets(target_train_file);
if (all_sentences_starts_with_silence)
add_sil_to_targets(data,silence_word);
if (strcmp(train_alignment,"")) {
data->readAlignments(train_alignment);
}
int n_observations = data->n_observations;
int n_cv_data = 0;
int real_n_cv_data = 0;
char** cv_files = NULL;
SeqDataSet *cv_data = NULL;
if (strcmp(cv_file,"")) {
read_data(cv_file,&n_cv_data, data_dir,extension);
real_n_cv_data = n_cv_data;
if (n_cv_data!=1) {
n_cv_data = max_load_cv > 0 && max_load_cv < n_cv_data ? max_load_cv : n_cv_data;
max_load_cv = -1;
}
if (htk) {
HtkSeqDataSet* hcv_data = new HtkSeqDataSet(cv_files,n_cv_data, max_load_cv);
hcv_data->setDictionary(&dict);
cv_data = hcv_data;
} else {
cv_data = new MatSeqDataSet(cv_files, n_cv_data, 0,-1,0,false, max_load_cv);
}
cv_data->init();
cv_data->readTargets(target_cv_file);
if (all_sentences_starts_with_silence)
add_sil_to_targets(cv_data,silence_word);
}
int n_test_data;
char** test_files = read_data(test_file,&n_test_data, data_dir,extension);
int real_n_test_data = n_test_data;
if (n_test_data!=1) {
n_test_data = max_load_test > 0 && max_load_test < n_test_data ? max_load_test : n_test_data;
max_load_test = -1;
}
SeqDataSet *test_data;
if (htk) {
HtkSeqDataSet *htest_data = new HtkSeqDataSet(test_files,n_test_data, max_load_test);
htest_data->setDictionary(&dict);
test_data = htest_data;
} else {
test_data = new MatSeqDataSet(test_files, n_test_data, 0,-1,0,false, max_load_test);
}
test_data->init();
test_data->readTargets(target_test_file);
if (all_sentences_starts_with_silence)
add_sil_to_targets(test_data,silence_word);
// compute the global variance of the training observations
// and set the minimum variance (thresh) as a ratio of the global variance
real* thresh = (real*)xalloc(n_observations*sizeof(real));
for (int i=0;i<n_observations;i++) {
real var_buff = 0;
real mean_buff = 0;
int n_frames = 0;
for (int j=0;j<data->n_examples;j++) {
data->setExample(j);
SeqExample* ex = (SeqExample*)data->inputs->ptr;
for (int k=0;k<ex->n_frames;k++) {
data->setFrame(k);
real z = ex->observations[data->current_frame][i];
var_buff += z*z;
mean_buff += z;
n_frames++;
}
}
var_buff /= (real)n_frames;
mean_buff /= (real)n_frames;
var_buff -= mean_buff*mean_buff;
if (var_buff <= 0) {
warning("compute variance: column %d has a null variance. setting to 1",i);
var_buff = 1;
}
thresh[i] = threshold * var_buff;
}
// create models for each phoneme
// Each model is an HMM with left-righ topology, where each state
// is modelled with a DiagonalGMM which is initialized with a Kmeans
// trained with EM.
Kmeans*** kmeans = (Kmeans***)xalloc(sizeof(Kmeans**)*n_phonemes);
DiagonalGMM*** gmm = (DiagonalGMM***)xalloc(sizeof(DiagonalGMM**)*n_phonemes);
EMTrainer*** kmeans_trainer = (EMTrainer***)xalloc(sizeof(EMTrainer**)*n_phonemes);
HMM** hmm = (HMM**)xalloc(sizeof(HMM*)*n_phonemes);
real*** transitions = (real***)xalloc(n_phonemes*sizeof(real**));
for (int i=0;i<n_phonemes;i++) {
kmeans[i] = (Kmeans**)xalloc(sizeof(Kmeans*)*n_states);
gmm[i] = (DiagonalGMM**)xalloc(sizeof(DiagonalGMM*)*n_states);
kmeans_trainer[i] = (EMTrainer**)xalloc(sizeof(EMTrainer*)*n_states);
for (int j=1;j<n_states-1;j++) {
kmeans[i][j] = new Kmeans(n_observations,n_gaussians,thresh,prior,data);
kmeans[i][j]->init();
kmeans_trainer[i][j] = new EMTrainer(kmeans[i][j],data);
kmeans_trainer[i][j]->setROption("end accuracy", accuracy);
kmeans_trainer[i][j]->setIOption("max iter", max_iter_kmeans);
gmm[i][j] = new DiagonalGMM(n_observations,n_gaussians,thresh,prior);
gmm[i][j]->setOption("initial kmeans trainer",&kmeans_trainer[i][j]);
gmm[i][j]->init();
}
gmm[i][0] = NULL;
gmm[i][n_states-1] = NULL;
// the transition table probability: left-right topology
transitions[i] = (real**)xalloc(n_states*sizeof(real*));
for (int j=0;j<n_states;j++) {
transitions[i][j] = (real*)xalloc(n_states*sizeof(real));
}
for (int j=0;j<n_states;j++) {
for (int k=0;k<n_states;k++)
transitions[i][j][k] = 0;
}
transitions[i][1][0] = 1;
for (int j=1;j<n_states-1;j++) {
transitions[i][j][j] = 0.5;
transitions[i][j+1][j] = 0.5;
}
// the silence model is special
if (i == silence_phoneme) {
transitions[i][n_states-2][1] = 1./3.;
transitions[i][1][1] = 1./3.;
transitions[i][2][1] = 1./3.;
transitions[i][1][n_states-2] = 1./3.;
transitions[i][n_states-2][n_states-2] = 1./3.;
transitions[i][n_states-1][n_states-2] = 1./3.;
}
hmm[i] = new HMM(n_states,(Distribution**)gmm[i],prior,data,transitions[i]);
hmm[i]->init();
}
// eventually provide a trainer using alignment, which is used to initialize
// each HMM with its own alignment when provided
EMTrainer* model_trainer = NULL;
if (initial_aligned_training_iter > 0) {
if (viterbi) {
model_trainer = (EMTrainer*)new ViterbiTrainer(hmm[0],data);
} else {
model_trainer = new EMTrainer(hmm[0],data);
}
model_trainer->setROption("end accuracy", accuracy);
model_trainer->setIOption("max iter", initial_aligned_training_iter);
}
SpeechHMM shmm(n_phonemes,hmm,phonemes,&dict,&grammar,word_entrance_penalty,
model_trainer);
shmm.init();
// if you just wanted to transform your saved model into an HTK model
if (save_htk) {
char save_model_name[100];
sprintf(save_model_name,"%s/%s",dir_name,save_model);
save_htk_model(save_model_name,&shmm,phonemes);
exit(1);
}
// these are the costs used in HTK
shmm.edit_distance->setCosts(7,7,10);
// these are the costs used in NIST
//shmm.edit_distance->setCosts(33,33,40);
// these are the basic costs
//shmm.edit_distance->setCosts(1,1,1);
EMTrainer* trainer = NULL;
if (viterbi) {
trainer = (EMTrainer*)new ViterbiTrainer(&shmm,data);
} else {
trainer = new EMTrainer(&shmm,data);
}
trainer->setROption("end accuracy", accuracy);
trainer->setIOption("max iter", max_iter_hmm);
// provide a few measurers, to measure negative log likelihoods,
// edit distance, and word segmentation for train, cv, and test data
List *train_meas_hmm = NULL;
char hmm_name[100];
if (strcmp(load_model,""))
sprintf(hmm_name,"%s/nll_train_load",dir_name);
else
sprintf(hmm_name,"%s/nll_train",dir_name);
NllMeasurer nll_meas_hmm(shmm.outputs,data,hmm_name);
nll_meas_hmm.init();
addToList(&train_meas_hmm,1,&nll_meas_hmm);
List *cv_test_meas_hmm = NULL;
char hmm_cv_name[100];
char cv_ed_name[100];
char cv_word_name[100];
NllMeasurer *nll_meas_hmm_cv = NULL;
EditDistanceMeasurer *ed_cv = NULL;
WordSegMeasurer *word_cv = NULL;
if (strcmp(cv_file,"")) {
if (strcmp(load_model,""))
sprintf(hmm_cv_name,"%s/nll_cv_load",dir_name);
else
sprintf(hmm_cv_name,"%s/nll_cv",dir_name);
nll_meas_hmm_cv = new NllMeasurer(shmm.outputs,cv_data,hmm_cv_name);
nll_meas_hmm_cv->init();
addToList(&train_meas_hmm,1,nll_meas_hmm_cv);
sprintf(cv_ed_name,"%s/ed_cv",dir_name);
ed_cv = new EditDistanceMeasurer(shmm.edit_distance,cv_data,cv_ed_name,false);
ed_cv->init();
addToList(&cv_test_meas_hmm,1,ed_cv);
sprintf(cv_word_name,"%s/word_cv",dir_name);
word_cv = new WordSegMeasurer(&shmm,cv_data,cv_word_name,true);
word_cv->init();
addToList(&cv_test_meas_hmm,1,word_cv);
}
char test_ed_name[100];
sprintf(test_ed_name,"%s/ed_test",dir_name);
EditDistanceMeasurer ed_test(shmm.edit_distance,test_data,test_ed_name,false);
ed_test.init();
addToList(&cv_test_meas_hmm,1,&ed_test);
char test_word_name[100];
sprintf(test_word_name,"%s/word_test",dir_name);
WordSegMeasurer word_test(&shmm,test_data,test_word_name,true);
word_test.init();
addToList(&cv_test_meas_hmm,1,&word_test);
List *test_init_meas = NULL;
char test_init_ed_name[100];
sprintf(test_init_ed_name,"%s/ed_test_init",dir_name);
EditDistanceMeasurer ed_test_init(shmm.edit_distance,test_data,test_init_ed_name,false);
ed_test_init.init();
addToList(&test_init_meas,1,&ed_test_init);
char test_init_word_name[100];
sprintf(test_init_word_name,"%s/word_test_init",dir_name);
WordSegMeasurer word_test_init(&shmm,test_data,test_init_word_name);
word_test_init.init();
addToList(&test_init_meas,1,&word_test_init);
// either we load the parameters of a saved model, or we initialize
// the model, decode (to see how good is an initialized model), and train it.
if (strcmp(load_model,"")) {
char load_model_name[100];
sprintf(load_model_name,"%s/%s",dir_name,load_model);
if (htk_model) {
load_htk_model(load_model,&shmm);
} else {
trainer->load(load_model_name);
}
} else {
shmm.reset();
if (strcmp(save_model,"")) {
char save_model_name[100];
sprintf(save_model_name,"%s/%s_init",dir_name,save_model);
trainer->save(save_model_name);
}
trainer->decode(test_init_meas);
trainer->train(train_meas_hmm);
}
// after training, we can save the model
if (strcmp(save_model,"")) {
char save_model_name[100];
sprintf(save_model_name,"%s/%s",dir_name,save_model);
trainer->save(save_model_name);
}
// then launch the decoding (using simple viterbi decoding)
trainer->decode(cv_test_meas_hmm);
// and delete everything!
for (int j=0;j<n_phonemes;j++) {
for (int i=1;i<n_states-1;i++) {
delete kmeans[j][i];
delete gmm[j][i];
delete kmeans_trainer[j][i];
}
free(kmeans[j]);
free(gmm[j]);
free(kmeans_trainer[j]);
delete hmm[j];
for (int i=0;i<n_states;i++)
free(transitions[j][i]);
free(transitions[j]);
}
free(transitions);
free(kmeans);
free(gmm);
free(kmeans_trainer);
free(hmm);
free(thresh);
freeList(&train_meas_hmm);
freeList(&cv_test_meas_hmm);
freeList(&test_init_meas);
if (strcmp(cv_file,"")) {
delete nll_meas_hmm_cv;
delete ed_cv;
delete word_cv;
}
delete data;
delete test_data;
delete cv_data;
delete trainer;
for (int i=0;i<real_n_train_data;i++)
free(train_files[i]);
free(train_files);
for (int i=0;i<real_n_cv_data;i++)
free(cv_files[i]);
free(cv_files);
for (int i=0;i<real_n_test_data;i++)
free(test_files[i]);
free(test_files);
for (int i=0;i<n_phonemes;i++)
free(phonemes[i]);
free(phonemes);
return(0);
}
|