File: mixture_softmax.cc

package info (click to toggle)
torch-examples 2-2
  • links: PTS
  • area: main
  • in suites: woody
  • size: 676 kB
  • ctags: 39
  • sloc: cpp: 1,973; makefile: 64; csh: 39
file content (270 lines) | stat: -rw-r--r-- 6,711 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
const char *help = "\
Mixture of MLP (c) Trebolloc & Co 2001\n";

#include "ConnectedMachine.h"
#include "Linear.h"
#include "FileDataSet.h"
#include "MseCriterion.h"
#include "Sigmoid.h"
#include "Tanh.h"
#include "MseMeasurer.h"
#include "TwoClassFormat.h"
#include "OneHotClassFormat.h"
#include "ClassMeasurer.h"
#include "SaturationMeasurer.h"
#include "StochasticGradient.h"
#include "GMTrainer.h"
#include "Mixer.h"
#include "Softmax.h"
#include "CmdLine.h"

using namespace Torch;

//======= The MLP-expert ================
class MLP : public ConnectedMachine
{
  public:
    Linear *cachees;
    Tanh *cachees_tanh;
    Linear *sorties;
    Tanh *sorties_tanh;
    
    MLP(int n_entrees, int n_cachees, int n_sorties);
    virtual ~MLP();
};

MLP::MLP(int n_entrees, int n_cachees, int n_sorties)
{
  cachees = new Linear(n_entrees, n_cachees);
  cachees_tanh = new Tanh(n_cachees);
  sorties = new Linear(n_cachees, n_sorties);
  sorties_tanh = new Tanh(n_sorties);

  cachees->init();
  cachees_tanh->init();
  sorties->init();
  sorties_tanh->init();

  addFCL(cachees);
  addFCL(cachees_tanh);
  addFCL(sorties);
  addFCL(sorties_tanh);
}

MLP::~MLP()
{
  delete cachees;
  delete cachees_tanh;
  delete sorties;
  delete sorties_tanh;
}
//=======================================

int main(int argc, char **argv)
{
  char *file;
  char *valid_file;
  int n_inputs;
  int n_targets;
  int n_hu;
  int max_load;
  real accuracy;
  real learning_rate;
  real decay;
  int max_iter;
  bool regression;
  char *file_model, *test_model;
  int n_experts;
  int n_hug;
  int the_seed;

  CmdLine cmd;

  cmd.info(help);

  cmd.addText("\nArguments:");
  cmd.addSCmdArg("file", &file, "the train or test file");
  cmd.addICmdArg("n_inputs", &n_inputs, "input dimension of the data");
  cmd.addICmdArg("n_targets", &n_targets, "output dimension of the data");

  cmd.addText("\nModel Options:");
  cmd.addICmdOption("-nhu", &n_hu, 25, "number of hidden units for experts");
  cmd.addICmdOption("-nhug", &n_hug, 25, "number of hidden units for gater");
  cmd.addBCmdOption("-rm", &regression, false, "regression mode");
  cmd.addICmdOption("-ne", &n_experts, 10, "number of experts");

  cmd.addText("\nLearning Options:");
  cmd.addICmdOption("-seed", &the_seed, -1, "c'est *the seed* mec");
  cmd.addICmdOption("-iter", &max_iter, 25, "max number of iterations");
  cmd.addRCmdOption("-lr", &learning_rate, 0.01, "learning rate");
  cmd.addRCmdOption("-e", &accuracy, 0.00001, "end accuracy");
  cmd.addRCmdOption("-lrd", &decay, 0, "learning rate decay");

  cmd.addText("\nMisc Options:");
  cmd.addICmdOption("-load", &max_load, -1, "max number of examples to load");
  cmd.addSCmdOption("-valid", &valid_file, "", "validation file");
  cmd.addSCmdOption("-sm", &file_model, "", "file to save the model");
  cmd.addSCmdOption("-test", &test_model, "", "model file to test");

  cmd.read(argc, argv);

  if(the_seed == -1)
    seed();
  else
    manual_seed((long)the_seed);

  ConnectedMachine mixture;

  // ============ The experts ===============
  ConnectedMachine experts;

  MLP **mlp = new MLP *[n_experts];
  for(int i = 0; i < n_experts; i++)
  {
    mlp[i] = new MLP(n_inputs, n_hu, n_targets);
    mlp[i]->init();
    experts.addMachine(mlp[i]);
  }

  experts.init();

  // ============ The gater =================
  Linear mixinl(n_inputs, n_hug);
  Tanh mixint(n_hug);
  Linear mixoutl(n_hug, n_experts);
  Softmax mixouts(n_experts);
  mixouts.setBOption("compute shift", true);

  mixinl.init();
  mixint.init();
  mixoutl.init();
  mixouts.init();

  //============== The rest =================
  mixture.addMachine(&mixinl);
  mixture.addMachine(&experts);
  mixture.addLayer();
  mixture.addMachine(&mixint);
  mixture.connectOn(&mixinl);
  mixture.addLayer();
  mixture.addMachine(&mixoutl);
  mixture.connectOn(&mixint);
  mixture.addLayer();
  mixture.addMachine(&mixouts);
  mixture.connectOn(&mixoutl);
  mixture.addLayer();

  Mixer mix(n_experts, n_targets);
  mix.init();
  mixture.addMachine(&mix);
  mixture.connectOn(&mixouts);
  mixture.connectOn(&experts);
  mixture.init();

  //=============== The datas ===============
  FileDataSet data(file, n_inputs, n_targets, false, max_load);
  data.setBOption("normalize inputs", true);
  data.init();

  FileDataSet *valid_data = NULL;
  if( strcmp(valid_file, "") )
  {
    valid_data = new FileDataSet(valid_file, n_inputs, n_targets);
    valid_data->init();
    valid_data->normalizeUsingDataSet(&data);
  }

  //=============== The measurers ===========

  // The class format
  ClassFormat *class_format = NULL;
  if(!regression)
  {
    if(n_targets == 1)
      class_format = new TwoClassFormat(&data);
    else
      class_format = new OneHotClassFormat(&data);
  }

  // On the train data...
  List *measurers = NULL;
  MseMeasurer *mse_meas = new MseMeasurer(mixture.outputs, &data, "the_mse_soft");
  mse_meas->init();
  addToList(&measurers, 1, mse_meas);

  ClassMeasurer *class_meas = NULL;
  if(!regression)
  {
    class_meas = new ClassMeasurer(mixture.outputs, &data, class_format, "the_class_err_soft");
    class_meas->init();
    addToList(&measurers, 1, class_meas);
  }

  // On the validation data...
  MseMeasurer *valid_mse_meas = NULL;
  ClassMeasurer *valid_class_meas = NULL;
  if( strcmp(valid_file, "") )
  {
    valid_mse_meas = new MseMeasurer(mixture.outputs, valid_data, "the_valid_mse_soft");
    valid_mse_meas->init();
    addToList(&measurers, 1, valid_mse_meas);

    if(!regression)
    {
      valid_class_meas = new ClassMeasurer(mixture.outputs, valid_data, class_format, "the_valid_class_err_soft");
      valid_class_meas->init();
      addToList(&measurers, 1, valid_class_meas);
    }
  }

  //=============== The trainer =============
  MseCriterion mse(n_targets);
  mse.init();

  StochasticGradient opt;
  opt.setIOption("max iter", max_iter);
  opt.setROption("end accuracy", accuracy);
  opt.setROption("learning rate", learning_rate);
  opt.setROption("learning rate decay", decay);
  GMTrainer trainer(&mixture, &data, &mse, &opt);

  message("Number of parameters: %d", mixture.n_params);

  if( strcmp(test_model, "") )
  {
    trainer.load(test_model);
    trainer.test(measurers);
  }
  else
  {
    trainer.train(measurers);
    
    if( strcmp(file_model, "") )
      trainer.save(file_model);
  }

  // Destroy all

  for(int i = 0; i < n_experts; i++)
    delete mlp[i];
  delete[] mlp;

  if(strcmp(valid_file, ""))
  {
    delete valid_data;
    delete valid_mse_meas;
    if(!regression)
      delete valid_class_meas;
  }

  delete mse_meas;
  if(!regression)
  {
    delete class_meas;
    delete class_format;
  }

  freeList(&measurers);

  return(0);
}