File: mlp.cc

package info (click to toggle)
torch-examples 2-2
  • links: PTS
  • area: main
  • in suites: woody
  • size: 676 kB
  • ctags: 39
  • sloc: cpp: 1,973; makefile: 64; csh: 39
file content (274 lines) | stat: -rw-r--r-- 7,929 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
const char *help = "\
MLPTorch (c) Trebolloc & Co 2001\n\
\n\
This program will train a MLP with tanh outputs for\n\
classification and linear outputs for regression\n";

#include "MLP.h"
#include "FileDataSet.h"
#include "ClassLLCriterion.h"
#include "MseCriterion.h"
#include "MseMeasurer.h"
#include "ClassMeasurer.h"
#include "TwoClassFormat.h"
#include "OneHotClassFormat.h"
#include "StochasticGradient.h"
#include "GMTrainer.h"
#include "CmdLine.h"
#include "string_utils.h"

using namespace Torch;

int main(int argc, char **argv)
{
  char *model_file, *test_model_file;
  char *valid_file;
  char *file;

  int n_inputs;
  int n_targets;
  int n_hu;

  int max_load;
  int max_load_valid;
  real accuracy;
  real learning_rate;
  real decay;
  int max_iter;
  bool regression;
  int k_fold;
  int the_seed;
  bool sigmoid_outputs;
  bool inputs_to_outputs;
  real weight_decay;
  bool one_hot;
  bool train_prob;

  char *dir_name;
  char *buffer;

  //=================== The command-line ==========================

  // Construct the command line
  CmdLine cmd;

  // Put the help line at the beginning
  cmd.info(help);

  // Ask for arguments
  cmd.addText("\nArguments:");
  cmd.addSCmdArg("file", &file, "the train or test file");
  cmd.addICmdArg("n_inputs", &n_inputs, "input dimension of the data");
  cmd.addICmdArg("n_targets", &n_targets, "output dimension of the data");

  // Propose some options
  cmd.addText("\nModel Options:");
  cmd.addICmdOption("-nhu", &n_hu, 25, "number of hidden units");
  cmd.addBCmdOption("-rm", &regression, false, "regression mode");
  cmd.addBCmdOption("-sigmoid", &sigmoid_outputs, false, "sigmoid outputs instead of tanh (for classification)");
  cmd.addBCmdOption("-i_to_o", &inputs_to_outputs, false, "add a linear connection from inputs to outputs");

  cmd.addText("\nLearning Options:");
  cmd.addICmdOption("-iter", &max_iter, 25, "max number of iterations");
  cmd.addRCmdOption("-lr", &learning_rate, 0.01, "learning rate");
  cmd.addRCmdOption("-e", &accuracy, 0.00001, "end accuracy");
  cmd.addRCmdOption("-lrd", &decay, 0, "learning rate decay");
  cmd.addRCmdOption("-wd", &weight_decay, 0, "weight decay");
  cmd.addBCmdOption("-prob", &train_prob, false, "in classification, train by maximizing the likelihood");

  cmd.addText("\nMisc Options:");
  cmd.addBCmdOption("-one_hot", &one_hot, false, "one-hot encoding for two classes classification");
  cmd.addICmdOption("-seed", &the_seed, -1, "the random seed");
  cmd.addICmdOption("-Kfold", &k_fold, -1, "number of subsets for K-fold cross-validation");
  cmd.addICmdOption("-load", &max_load, -1, "max number of examples to load for train");
  cmd.addICmdOption("-load_valid", &max_load_valid, -1, "max number of examples to load for valid");
  cmd.addSCmdOption("-valid", &valid_file, "", "validation file, if you want it");
  cmd.addSCmdOption("-sm", &model_file, "", "file to save the model");
  cmd.addSCmdOption("-test", &test_model_file, "", "model file to test");
  cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");

  // Read the command line
  cmd.read(argc, argv);

  // If the user didn't give any random seed,
  // generate a random random seed...
  if(the_seed == -1)
    seed();
  else
    manual_seed((long)the_seed);

  //=================== Create the MLP... =========================
  MLP mlp(n_inputs, n_hu, n_targets);
  if(!regression)
  {
    if(train_prob && !regression)
      mlp.setBOption("log-softmax outputs", true);
    else
    {
      if(sigmoid_outputs)
        mlp.setBOption("sigmoid outputs", true);
      else
        mlp.setBOption("tanh outputs", true);
    }
  }
  mlp.setROption("weight decay", weight_decay);
  mlp.setBOption("inputs to outputs", inputs_to_outputs);

  // Initialize the MLP
  mlp.init();


  //=================== DataSets & Measurers... ===================

  // Create the training dataset (normalize inputs)
  FileDataSet data(file, n_inputs, n_targets, false, max_load);
  data.setBOption("normalize inputs", true);
  data.init();

  // The list of measurers...
  List *measurers = NULL;

  // The class format
  ClassFormat *class_format = NULL;
  if(!regression)
  {
    if( (n_targets == 1) && (!train_prob) && (!one_hot) )
      class_format = new TwoClassFormat(&data);
    else
      class_format = new OneHotClassFormat(&data);
  }

  // The validation set...
  FileDataSet *valid_data = NULL;
  MseMeasurer *valid_mse_meas = NULL;
  ClassMeasurer *valid_class_meas = NULL;

  // Create a validation set, if any
  if(strcmp(valid_file, ""))
  {
    // Load the validation set and normalize it with the
    // values in the train dataset
    valid_data = new FileDataSet(valid_file, n_inputs, n_targets, false, max_load_valid);
    valid_data->init();
    valid_data->normalizeUsingDataSet(&data);

    // Create a MSE measurer and an error class measurer
    // on the validation dataset (if we are not in regression)
    buffer = strConcat(2, dir_name, "/the_valid_mse");
    valid_mse_meas = new MseMeasurer(mlp.outputs, valid_data, buffer);
    valid_mse_meas->init();
    addToList(&measurers, 1, valid_mse_meas);
    free(buffer);

    if(!regression)
    {
      buffer = strConcat(2, dir_name, "/the_valid_class_err");
      valid_class_meas = new ClassMeasurer(mlp.outputs, valid_data, class_format, buffer);
      valid_class_meas->init();
      addToList(&measurers, 1, valid_class_meas);
      free(buffer);
    }
  }

  // Measurers on the training dataset
  buffer = strConcat(2, dir_name, "/the_mse");
  MseMeasurer *mse_meas = new MseMeasurer(mlp.outputs, &data, buffer);
  mse_meas->init();
  addToList(&measurers, 1, mse_meas);
  free(buffer);

  ClassMeasurer *class_meas = NULL;
  if(!regression)
  {
    buffer = strConcat(2, dir_name, "/the_class_err");
    class_meas = new ClassMeasurer(mlp.outputs, &data, class_format, buffer);
    class_meas->init();
    addToList(&measurers, 1, class_meas);
    free(buffer);
  }

  //=================== The Trainer ===============================
  
  // The criterion for the GMTrainer (MSE criterion or LL criterion)
  MseCriterion *mse = NULL;
  ClassLLCriterion *cllc = NULL;

  Criterion *the_criterion;
  if(train_prob && !regression)
  {
    cllc = new ClassLLCriterion(class_format);
    cllc->init();
    the_criterion = cllc;
  }
  else
  {
    mse = new MseCriterion(n_targets);
    mse->init();
    the_criterion = mse;
  }

  // The optimizer for the GMTrainer
  StochasticGradient opt;
  opt.setIOption("max iter", max_iter);
  opt.setROption("end accuracy", accuracy);
  opt.setROption("learning rate", learning_rate);
  opt.setROption("learning rate decay", decay);

  // The Gradient Machine Trainer
  GMTrainer trainer(&mlp, &data, the_criterion, &opt);

  //=================== Let's go... ===============================

  // Print the number of parameter of the MLP (just for fun)
  message("Number of parameters: %d", mlp.n_params);

  // If the user provides a previously trained model,
  // test it...
  if( strcmp(test_model_file, "") )
  {
    trainer.load(test_model_file);
    trainer.test(measurers);
  }

  // ...else...
  else
  {
    // If the user provides a number for the K-fold validation,
    // do a K-fold validation
    if(k_fold > 0)
      trainer.crossValidate(k_fold, NULL, measurers);

    // Else, train the model
    else
      trainer.train(measurers);

    // Save the model if the user provides a name for that
    if( strcmp(model_file, "") )
      trainer.save(model_file);
  }

  //=================== Quit... ===================================
  if(strcmp(valid_file, ""))
  {
    delete valid_data;
    delete valid_mse_meas;
    if(!regression)
      delete valid_class_meas;
  }

  delete mse_meas;
  if(!regression)
  {
    delete class_meas;
    delete class_format;
  }

  if(train_prob && !regression)
    delete cllc;
  else
    delete mse;

  freeList(&measurers);

  return(0);
}