1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
// Copyright (C) 2002 Samy Bengio (bengio@idiap.ch)
//
//
// This file is part of Torch. Release II.
// [The Ultimate Machine Learning Library]
//
// Torch is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Torch is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Torch; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef RBF_INC
#define RBF_INC
#include "ConnectedMachine.h"
#include "Linear.h"
#include "Exp.h"
#include "Tanh.h"
#include "LogRBF.h"
#include "SumMachine.h"
namespace Torch {
/** This class is a simple interface to the #ConnectedMachine# class that
ca be used to build the well-known Radial Basis Function type of
neural networks. It contains a layer of #LogRBF# followed by a layer
of #Exp#, followed by a layer of #Linear# and optionally a layer
of #Tanh# for classification experiments. Optionally, it also contains
a direct connection from the inputs to the linear layer.
@author Samy Bengio (bengio@idiap.ch)
*/
class RBF : public ConnectedMachine
{
public:
/// the #LogRBF# layer
LogRBF *log_rbf_layer;
/// the #Exp# layer
Exp *exp_layer;
/// the #Linear# layer
Linear *outputs_layer;
/// the optional #Tanh# layer
Tanh *outputs_tanh_layer;
/// the number of basis functions
int n_hidden;
/// if this is false, add a #Tanh# layer
bool is_linear_outputs;
/// if this is true, add a direct connection from inputs to #Linear#
bool inputs_to_outputs;
/// the direct #Linear# layer
Linear* add_layer;
/// if #inputs_to_outputs# is true, we also need a #SumMachine#
SumMachine* sum_layer;
///
RBF(int n_inputs_, int n_hidden, int n_outputs_, bool is_linear_outputs_=true,bool inputs_to_outputs=false,EMTrainer* kmeans_trainer=NULL);
virtual ~RBF();
};
}
#endif
|