1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
|
// Copyright (C) 2002 Samy Bengio (bengio@idiap.ch)
// and Bison Ravi (francois.belisle@idiap.ch)
//
//
// This file is part of Torch. Release II.
// [The Ultimate Machine Learning Library]
//
// Torch is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Torch is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Torch; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef BAYES_CLASSIFIER_INC
#define BAYES_CLASSIFIER_INC
#include "Trainer.h"
#include "BayesClassifierMachine.h"
namespace Torch {
/** A multi class bayes classifier -- maximizes the likelihood of each class
separately using a trainer for distribution. When testing, the predicted
class corresponds to the trainer giving the maximum output, weighted by
its prior probability.
@author Samy Bengio (bengio@idiap.ch)
@author Bison Ravi (francois.belisle@idiap.ch)
*/
class BayesClassifier : public Trainer
{
public:
/// the bayes machine
BayesClassifierMachine* bayesmachine;
/// the number of different classes
int n_classes;
/// all the example indices of each class.
int** classes;
///the number of examples per class.
int* classes_n;
/// you need to define a BayesClassifierMachine to use this class
BayesClassifier( BayesClassifierMachine* , DataSet*);
virtual ~BayesClassifier();
virtual void train( List* );
};
}
#endif
|