1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
// Copyright (C) 2002 Samy Bengio (bengio@idiap.ch)
//
//
// This file is part of Torch. Release II.
// [The Ultimate Machine Learning Library]
//
// Torch is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Torch is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Torch; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "EMTrainer.h"
#include "log_add.h"
namespace Torch {
EMTrainer::EMTrainer(Distribution *distribution_, SeqDataSet *data_) : Trainer(distribution_,(DataSet*)data_)
{
distribution = distribution_;
sdata = data_;
addROption("end accuracy", &end_accuracy, 0.0001,"end accuracy",true);
addIOption("max iter", &max_iter, 100, "maximum number of iterations",true);
}
void EMTrainer::train(List *measurers)
{
int iter = 0;
int n_train = sdata->n_examples;
real prev_nll = INF;
real nll = INF;
DataSet **datas;
Measurer ***mes;
int *n_mes;
int n_datas;
message("EMTrainer: training");
extractMeasurers(measurers, sdata, &datas, &mes, &n_mes, &n_datas);
// first compute tot_n_frames;
sdata->totNFrames();
while (1) {
distribution->eMIterInitialize();
nll = 0;
for (int t=0;t<n_train;t++) {
data->setExample(t);
distribution->eMForward(data->inputs);
nll -= distribution->log_probability;
distribution->eMAccPosteriors(data->inputs,LOG_ONE);
for(int i = 0; i < n_mes[0]; i++)
mes[0][i]->measureEx();
}
nll /= sdata->tot_n_frames;
distribution->eMUpdate();
for(int i = 0; i < n_mes[0]; i++)
mes[0][i]->measureIter();
// for each supplementary dataset given, simply compute
// test llr (not used for training)
for(int julie = 1; julie < n_datas; julie++) {
SeqDataSet *dataset = (SeqDataSet*)datas[julie];
for(int t=0;t<dataset->n_examples;t++) {
dataset->setExample(t);
distribution->eMForward(dataset->inputs);
for(int i = 0; i < n_mes[julie]; i++)
mes[julie][i]->measureEx();
}
for(int i = 0; i < n_mes[julie]; i++)
mes[julie][i]->measureIter();
}
// stopping criterion
if ((prev_nll == nll) || fabs((prev_nll - nll)/prev_nll) < end_accuracy) {
print("\n");
break;
}
prev_nll = nll;
print(".");
iter++;
if ((iter >= max_iter) && (max_iter > 0)) {
print("\n");
warning("EMTrainer: you have reached the maximum number of iterations");
break;
}
}
for(int i=0;i<n_datas;i++) {
for(int j=0;j<n_mes[i];j++)
mes[i][j]->measureEnd();
}
deleteExtractedMeasurers(datas, mes, n_mes, n_datas);
}
void EMTrainer::test(List *measurers)
{
DataSet **datas;
Measurer ***mes;
int *n_mes;
int n_datas;
message("emtrainer: testing");
extractMeasurers(measurers, NULL, &datas, &mes, &n_mes, &n_datas);
for(int andrea = 0; andrea < n_datas; andrea++)
{
DataSet *dataset = datas[andrea];
for(int i = 0; i < n_mes[andrea]; i++)
mes[andrea][i]->reset();
distribution->eMIterInitialize();
for(int t = 0; t < dataset->n_examples; t++)
{
dataset->setExample(t);
distribution->eMForward(dataset->inputs);
for(int i = 0; i < n_mes[andrea]; i++)
mes[andrea][i]->measureEx();
}
for(int i = 0; i < n_mes[andrea]; i++)
mes[andrea][i]->measureIter();
for(int i = 0; i < n_mes[andrea]; i++)
mes[andrea][i]->measureEnd();
}
deleteExtractedMeasurers(datas, mes, n_mes, n_datas);
}
void EMTrainer::decode(List *measurers)
{
DataSet **datas;
Measurer ***mes;
int *n_mes;
int n_datas;
message("emtrainer: decoding");
extractMeasurers(measurers, NULL, &datas, &mes, &n_mes, &n_datas);
for(int andrea = 0; andrea < n_datas; andrea++)
{
DataSet *dataset = datas[andrea];
for(int i = 0; i < n_mes[andrea]; i++)
mes[andrea][i]->reset();
distribution->eMIterInitialize();
for(int t = 0; t < dataset->n_examples; t++)
{
dataset->setExample(t);
distribution->decode(dataset->inputs);
for(int i = 0; i < n_mes[andrea]; i++)
mes[andrea][i]->measureEx();
}
for(int i = 0; i < n_mes[andrea]; i++)
mes[andrea][i]->measureIter();
for(int i = 0; i < n_mes[andrea]; i++)
mes[andrea][i]->measureEnd();
}
deleteExtractedMeasurers(datas, mes, n_mes, n_datas);
}
EMTrainer::~EMTrainer()
{
}
}
|