1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
// Copyright (C) 2002 Samy Bengio (bengio@idiap.ch)
//
//
// This file is part of Torch. Release II.
// [The Ultimate Machine Learning Library]
//
// Torch is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Torch is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Torch; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "LogRBF.h"
namespace Torch {
LogRBF::LogRBF(int n_inputs_, int n_outputs_, EMTrainer* kmeans_trainer)
{
n_inputs = n_inputs_;
n_outputs = n_outputs_;
initial_kmeans_trainer = kmeans_trainer;
}
int LogRBF::numberOfParams()
{
return(2*n_inputs*n_outputs);
}
void LogRBF::init()
{
GradientMachine::init();
reset();
}
void LogRBF::reset()
{
if (initial_kmeans_trainer) {
initial_kmeans_trainer->machine->reset();
initial_kmeans_trainer->train(NULL);
// transform variances into gamma
real* kmeans_params =
(real*)initial_kmeans_trainer->distribution->params->ptr;
real* kmeans_var = kmeans_params + n_outputs + n_inputs;
real* kmeans_mu = kmeans_params + n_outputs;
real* mu = (real*)params->ptr;
real* gamma = (real*)params->ptr + n_inputs;
for (int i=0;i<n_outputs;i++) {
for (int j=0;j<n_inputs;j++,gamma++,kmeans_var++,kmeans_mu++,mu++) {
*gamma = 1./sqrt(*kmeans_var);
*mu = *kmeans_mu;
}
kmeans_var += n_inputs;
gamma += n_inputs;
kmeans_mu += n_inputs;
mu += n_inputs;
}
} else {
// think more about this...
real *params_ = (real *)params->ptr;
real bound = 1./sqrt((real)n_inputs);
for(int i = 0; i < n_params; i++)
params_[i] = bounded_uniform(-bound, bound);
}
}
void LogRBF::forward(List *inputs)
{
real *ptr_params = (real *)params->ptr;
real *ptr_outputs = (real *)outputs->ptr;
real *mu = ptr_params;
real *gamma = mu + n_inputs;
for(int s = 0; s < n_outputs; s++)
{
real out = 0;
List *inputs_ = inputs;
while(inputs_)
{
real *x = (real *)inputs_->ptr;
for(int j = 0; j < inputs_->n; j++) {
real diff = (*x++ - *mu++) * *gamma++;
out += diff*diff;
}
inputs_ = inputs_->next;
}
out *= -0.5;
*ptr_outputs++ = out;
mu += n_inputs;
gamma += n_inputs;
}
}
void LogRBF::backward(List *inputs, real *alpha)
{
real *beta_ptr = beta;
for(int k = 0; k < n_inputs; k++)
*beta_ptr++ = 0;
real *alpha_ptr = alpha;
real *params_ptr = (real *)params->ptr;
real *der_params_ptr = (real *)der_params->ptr;
real *mu = params_ptr;
real *gamma = mu + n_inputs;
real *der_mu = der_params_ptr;
real *der_gamma = der_mu + n_inputs;
for(int j = 0; j < n_outputs; j++, alpha_ptr++)
{
List *inputs_ = inputs;
beta_ptr = beta;
while(inputs_)
{
real *x = (real *)inputs_->ptr;
for(int k = 0; k < inputs_->n; k++) {
real diff = (*x++ - *mu++);
real g2 = (*gamma * *gamma);
real dd = *alpha_ptr * 2. * diff * g2;
*der_mu++ = dd;
*beta_ptr++ += dd;
*der_gamma++ = *alpha_ptr * 2. * diff*diff * *gamma++;
}
inputs_ = inputs_->next;
}
mu += n_inputs;
gamma += n_inputs;
der_mu += n_inputs;
der_gamma += n_inputs;
}
}
LogRBF::~LogRBF()
{
}
}
|