File: LogRBF.cc

package info (click to toggle)
torch 2-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 5,488 kB
  • ctags: 3,217
  • sloc: cpp: 14,272; makefile: 201
file content (147 lines) | stat: -rw-r--r-- 3,765 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
// Copyright (C) 2002 Samy Bengio (bengio@idiap.ch)
//                
//
// This file is part of Torch. Release II.
// [The Ultimate Machine Learning Library]
//
// Torch is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Torch is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Torch; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

#include "LogRBF.h"

namespace Torch {

LogRBF::LogRBF(int n_inputs_, int n_outputs_, EMTrainer* kmeans_trainer)
{
  n_inputs = n_inputs_;
  n_outputs = n_outputs_;
  initial_kmeans_trainer = kmeans_trainer;
}

int LogRBF::numberOfParams()
{
  return(2*n_inputs*n_outputs);
}

void LogRBF::init()
{
  GradientMachine::init();
  reset();
}

void LogRBF::reset()
{
  if (initial_kmeans_trainer) {
    initial_kmeans_trainer->machine->reset();
    initial_kmeans_trainer->train(NULL);
    // transform variances into gamma
    real* kmeans_params = 
      (real*)initial_kmeans_trainer->distribution->params->ptr;
    real* kmeans_var = kmeans_params + n_outputs + n_inputs;
    real* kmeans_mu = kmeans_params + n_outputs;
    real* mu = (real*)params->ptr;
    real* gamma = (real*)params->ptr + n_inputs;
    for (int i=0;i<n_outputs;i++) {
      for (int j=0;j<n_inputs;j++,gamma++,kmeans_var++,kmeans_mu++,mu++) {
        *gamma = 1./sqrt(*kmeans_var);
        *mu = *kmeans_mu;
      }
      kmeans_var += n_inputs;
      gamma += n_inputs;
      kmeans_mu += n_inputs;
      mu += n_inputs;
    }
  } else {
    // think more about this...
    real *params_ = (real *)params->ptr;
    real bound = 1./sqrt((real)n_inputs);

    for(int i = 0; i < n_params; i++)
      params_[i] = bounded_uniform(-bound, bound);
  }
}

void LogRBF::forward(List *inputs)
{
  real *ptr_params = (real *)params->ptr;
  real *ptr_outputs = (real *)outputs->ptr;
  real *mu = ptr_params;
  real *gamma = mu + n_inputs;

  for(int s = 0; s < n_outputs; s++)
  {
    real out = 0;
    List *inputs_ = inputs;
    while(inputs_)
    {
      real *x = (real *)inputs_->ptr;
      for(int j = 0; j < inputs_->n; j++) {
        real diff = (*x++ - *mu++) * *gamma++;
        out += diff*diff;
      }
      inputs_ = inputs_->next;
    }
    out *= -0.5;
    *ptr_outputs++ = out;
    mu += n_inputs;
    gamma += n_inputs;
  }
}

void LogRBF::backward(List *inputs, real *alpha)
{
  real *beta_ptr = beta;
  for(int k = 0; k < n_inputs; k++)
    *beta_ptr++ = 0;

  real *alpha_ptr = alpha;
  real *params_ptr = (real *)params->ptr;
  real *der_params_ptr = (real *)der_params->ptr;

  real *mu = params_ptr;
  real *gamma = mu + n_inputs;
  real *der_mu = der_params_ptr;
  real *der_gamma = der_mu + n_inputs;

  for(int j = 0; j < n_outputs; j++, alpha_ptr++)
  {
    List *inputs_ = inputs;
    beta_ptr = beta;
    while(inputs_)
    {
      real *x = (real *)inputs_->ptr;
      for(int k = 0; k < inputs_->n; k++) {
        real diff = (*x++ - *mu++);
        real g2 = (*gamma * *gamma);
        real dd = *alpha_ptr * 2. * diff * g2;
        *der_mu++ = dd;
        *beta_ptr++ += dd;
        *der_gamma++ = *alpha_ptr * 2. * diff*diff * *gamma++;
      }
      inputs_ = inputs_->next;
    }
    mu += n_inputs;
    gamma += n_inputs;
    der_mu += n_inputs;
    der_gamma += n_inputs;
  }
}

LogRBF::~LogRBF()
{

}

}