File: Bagging.html

package info (click to toggle)
torch 2-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 5,488 kB
  • ctags: 3,217
  • sloc: cpp: 14,272; makefile: 201
file content (163 lines) | stat: -rw-r--r-- 8,029 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
   <TITLE>class  Bagging</TITLE>
   <META NAME="GENERATOR" CONTENT="DOC++ 3.4.8">
</HEAD>
<BODY BGCOLOR="#ffffff">

<H2>class  <A HREF="#DOC.DOCU">Bagging</A></H2></H2><BLOCKQUOTE>This class represents a <TT>Trainer</TT> that implements the well-known Bagging algorithm (Breiman, 1996).</BLOCKQUOTE>
<HR>

<H2>Inheritance:</H2>
<APPLET CODE="ClassGraph.class" WIDTH=600 HEIGHT=95>
<param name=classes value="CObject,MObject.html,CTrainer,MTrainer.html,CBagging,MBagging.html">
<param name=before value="M,M,M">
<param name=after value="Md_SP,Md_,M">
<param name=indent value="0,1,2">
<param name=arrowdir value="down">
</APPLET>
<HR>

<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="WeightedSumMachine.html">WeightedSumMachine</A>* <B><A HREF="#DOC.1.1">w_machine</A></B>
<DD><I>This machine performs the combination.</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>int <B><A HREF="#DOC.1.2">n_trainers</A></B>
<DD><I>The number of trainers in the bagging</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>int** <B><A HREF="#DOC.1.3">unselected_examples</A></B>
<DD><I>for each trainer, keep the indices of examples not used during training</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>int** <B><A HREF="#DOC.1.4">selected_examples</A></B>
<DD><I>for each trainer, keep the indices of examples used during training</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>int* <B><A HREF="#DOC.1.5">n_unselected_examples</A></B>
<DD><I>for each trainer, keep the number of examples not used during training</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>int* <B><A HREF="#DOC.1.6">is_selected_examples</A></B>
<DD><I>for each trainer, keep the number of examples used during training</I>
</DL></P>

<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif> <B><A HREF="#DOC.1.7">Bagging</A></B>(<!1><A HREF="WeightedSumMachine.html">WeightedSumMachine</A>* w_machine_, <!1><A HREF="DataSet.html">DataSet</A>* data_)
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   void <B><A HREF="#DOC.1.8">bootstrapData</A></B>(int* selected, int* is_selected)
<DD><I>create a boostrap of the data and put in in selected</I>
</DL></P>

</DL>
<HR><H3>Inherited from <A HREF="Trainer.html">Trainer</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>train</B>(<!1><A HREF="List.html">List</A>* measurers)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>test</B>(<!1><A HREF="List.html">List</A>* measurers)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>testExample</B>(<!1><A HREF="List.html">List</A>* measurers, int t)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>crossValidate</B>(int k_fold, <!1><A HREF="List.html">List</A>* train_measurers, <!1><A HREF="List.html">List</A>* test_measurers, <!1><A HREF="List.html">List</A>* cross_valid_measurers=NULL)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>loadFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>saveFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
</DL></P>

</DL>
<HR><H3>Inherited from <A HREF="Object.html">Object</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>init</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int size, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, int init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, real init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, bool init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>load</B>(const char* filename)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>save</B>(const char* filename)
</DL></P>

</DL>

<A NAME="DOC.DOCU"></A>
<HR>
<H2>Documentation</H2>
<BLOCKQUOTE>This class represents a <TT>Trainer</TT> that implements the well-known
Bagging algorithm (Breiman, 1996). A "bagger" contains a series
of trainers, each trained on a bootstrap of the original dataset.
The output of the bagging is then the average of the output of
each trainer.

<P>It is implemented using a <TT>WeightedSumMachine</TT> that performs the combination.

<P></BLOCKQUOTE>
<DL>

<A NAME="w_machine"></A>
<A NAME="DOC.1.1"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="WeightedSumMachine.html">WeightedSumMachine</A>* w_machine</B></TT>
<DD>This machine performs the combination. It contains many trainers.
<DL><DT><DD></DL><P>
<A NAME="n_trainers"></A>
<A NAME="DOC.1.2"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>int n_trainers</B></TT>
<DD>The number of trainers in the bagging
<DL><DT><DD></DL><P>
<A NAME="unselected_examples"></A>
<A NAME="DOC.1.3"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>int** unselected_examples</B></TT>
<DD>for each trainer, keep the indices of examples not used during training
<DL><DT><DD></DL><P>
<A NAME="selected_examples"></A>
<A NAME="DOC.1.4"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>int** selected_examples</B></TT>
<DD>for each trainer, keep the indices of examples used during training
<DL><DT><DD></DL><P>
<A NAME="n_unselected_examples"></A>
<A NAME="DOC.1.5"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>int* n_unselected_examples</B></TT>
<DD>for each trainer, keep the number of examples not used during training
<DL><DT><DD></DL><P>
<A NAME="is_selected_examples"></A>
<A NAME="DOC.1.6"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>int* is_selected_examples</B></TT>
<DD>for each trainer, keep the number of examples used during training
<DL><DT><DD></DL><P>
<A NAME="Bagging"></A>
<A NAME="DOC.1.7"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B> Bagging(<!1><A HREF="WeightedSumMachine.html">WeightedSumMachine</A>* w_machine_, <!1><A HREF="DataSet.html">DataSet</A>* data_)</B></TT>
<DL><DT><DD></DL><P>
<A NAME="bootstrapData"></A>
<A NAME="DOC.1.8"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   void bootstrapData(int* selected, int* is_selected)</B></TT>
<DD>create a boostrap of the data and put in in selected
<DL><DT><DD></DL><P></DL>

<HR><DL><DT><B>This class has no child classes.</B></DL>

<DL><DT><DT><B>Author:</B><DD>Samy Bengio (bengio@idiap.ch)

<DT><B>See Also:</B><DD><!1><A HREF="WeightedSumMachine.html">WeightedSumMachine</A><BR><DD></DL><P><P><I><A HREF="index.html">Alphabetic index</A></I> <I><A HREF="HIER.html">HTML hierarchy of classes</A> or <A HREF="HIERjava.html">Java</A></I></P><HR>
<BR>
This page was generated with the help of <A HREF="http://docpp.sourceforge.net">DOC++</A>.
</BODY>
</HTML>